Shear strength of Al–Cu alloy with different types of hardening precipitates: molecular dynamics and continuum modeling

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A molecular dynamics study of the motion of dislocations in aluminum containing hardening copper precipitates is carried out. The paper considers the interaction of dislocation with four types of precipitates, the structure of which was determined in experimental work. The energy of dislocation segments attached to hardening phases is determined and used as a parameter of the continuum model of the dislocation-precipitate interaction. An increase in energy is observed for hybrid precipitates compared to non-hybrid ones.

作者简介

P. Bezborodova

Chelyabinsk State University

编辑信件的主要联系方式.
Email: ibragimova-polin@mail.ru
Russia, 454001, Chelyabinsk

V. Krasnikov

Chelyabinsk State University

Email: ibragimova-polin@mail.ru
Russia, 454001, Chelyabinsk

M. Gazizov

Belgorod State National Research University

Email: ibragimova-polin@mail.ru
Russia, 308015, Belgorod

A. Mayer

Chelyabinsk State University

Email: ibragimova-polin@mail.ru
Russia, 454001, Chelyabinsk

V. Pogorelko

Chelyabinsk State University

Email: ibragimova-polin@mail.ru
Russia, 454001, Chelyabinsk

参考

  1. Polmear I.J. Light metals: from traditional alloys to nanocrystals. 4rd ed. Oxford: Elsevier/Butterworth-Heinemann, 2006.
  2. McDowell D.L. // Int. J. Plast. 2010. V. 26. P. 1280.
  3. Ковалевская Т.А., Данейко О.И. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 1002; Kovalevskaya T.A., Daneyko O.I. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 776.
  4. Варюхин В.Н., Малашенко В.В. // Изв. РАН. Сер. физ. 2018. Т. 82. № 9. С. 1213; Varyukhin V.N., Malashenko V.V. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 9. P. 1101.
  5. Porter D.A., Easterling K.E., Sherif M.Y. Phase transformations in metals and alloys. N.Y.: CRC Press, 2014.
  6. Konno T.J., Hiraga K., Kawasaki M. // Scripta. Mater. 2001. V. 44. No. 8–9. P. 2303.
  7. Gao L., Li K., Ni S. et al. // J. Mater. Sci. Technol. 2021. V. 61. P. 25.
  8. da Costa Teixeira J., Cram D.G., Bourgeois L. et al. // Acta Mater. 2008. V. 56. No. 20. P. 6109.
  9. Chen Y., Zhang Z., Chen Z. et al. // Acta Mater. 2017. V. 125. P. 340.
  10. Ma Z., Zhan L., Liu C. et al. // Int. J. Plast. 2018. V. 110. P. 183.
  11. Liu H., Papadimitriou I., Lin F.X., Lorca J.L. et al. // Acta Mater. 2019. V. 167. P. 121.
  12. Zhou L., Wu C.L., Xie P. et al. // J. Mater. Sci. Technol. 2021. V. 75. P. 126.
  13. Bourgeois L., Medhekar N.V., Smith A.E. et al. // Phys. Rev. Lett. 2013. V. 111. Art. No. 069901.
  14. Liu C., Ma Z., Ma P. et al. // Mater. Sci. Eng. A. 2018. V. 733. P. 28.
  15. Krasnikov V.S., Mayer A.E., Pogorelko V.V. et al. // Int. J. Plast. 2020. V. 125. P. 169.
  16. Krasnikov V.S., Mayer A.E., Pogorelko V.V. // Int. J. Plast. 2020. V. 128. Art. No. 102672.
  17. Fomin E.V., Mayer A.E., Krasnikov V.S. // Int. J. Plast. 2021. V. 146. Art. No. 103095.
  18. Mahata A., Zaeem M.A. // J. Cryst. Growth. 2019. V. 527. Art. No. 125255.
  19. Haapalehto M., Pinomaa T., Wang L., Laukkanen A. // Comput. Mater. Sci. 2022. V. 209. Art. No. 111356.
  20. Hirel P. // Comput. Phys. Comm. 2015. V. 197. P. 212.
  21. Daw M.S., Foiles S.M., Baskes M.I. // Mater. Sci. Rep. 1993. V. 9. 251.
  22. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. // J. Chem. Phys. 1984. V. 81. Art. No. 8.
  23. Plimpton S. // J. Comp. Phys. 1995. V. 117. P. 1.
  24. Apostol F., Mishin Y. // Phys. Rev. B. 2011. V. 83. Art. No. 054116.
  25. Stukowski A. // Mater. Sci. Eng. 2010. V. 18. Art. No. 015012.
  26. Krasnikov V.S., Mayer A.E. // Int. J. Plast. 2019. V. 119. P. 21.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (517KB)
4.

下载 (1MB)
5.

下载 (531KB)

版权所有 © П.А. Безбородова, В.С. Красников, М.Р. Газизов, А.Е. Майер, В.В. Погорелко, 2023