Эволюция структуры оболочек полых субмикронных частиц SiO2 в процессе термообработки

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Синтезированы полые частицы SiO2 субмикронных размеров и исследованы изменения структуры и морфологии их оболочек в процессе термообработки. Изучены зависимости усадки кремнеземных оболочек от температуры отжига частиц. Установлено, что после отжига при 600°С оболочки полых частиц становятся беспористыми и непроницаемыми для жидких сред.

Об авторах

Н. С. Сухинина

Федеральное государственное бюджетное учреждение науки
Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук

Автор, ответственный за переписку.
Email: suhinina@issp.ac.ru
Россия, Черноголовка

В. М. Масалов

Федеральное государственное бюджетное учреждение науки
Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук

Email: suhinina@issp.ac.ru
Россия, Черноголовка

И. И. Ходос

Федеральное государственное бюджетное учреждение науки
Институт проблем технологии микроэлектроники и особочистых материалов Российской академии наук

Email: suhinina@issp.ac.ru
Россия, Черноголовка

А. А. Жохов

Федеральное государственное бюджетное учреждение науки
Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук

Email: suhinina@issp.ac.ru
Россия, Черноголовка

Г. А. Емельченко

Федеральное государственное бюджетное учреждение науки
Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук

Email: suhinina@issp.ac.ru
Россия, Черноголовка

Список литературы

  1. Hu J., Chen M., Fang X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 5472.
  2. Bao Y., Shi C., Wang T. et al. // Micropor. Mesopor. Mater. 2016. V. 227. P. 121.
  3. Sharma J., Polizos G. // Nanomaterials. 2020. V. 10. No. 8. P. 1599.
  4. Spence D., Cullen D.A., Polizos G. et al. // Nanomaterials. 2021. V. 11. P. 1627.
  5. Sharma J., Polizos G., Jafta C.J. et al. // RSC Advances. 2022. V. 12. P. 15373.
  6. Nguyen-Thi N.-T., Pham Tran L.P., Le N.T.T. et al. // Process. 2019. V. 7. No. 11. P. 805.
  7. Nguyen N.H., Tran D.L., Truong-Thi N.-H. et al. // J. Appl. Polym. Sci. 2022. V. 139. No. 45. Art. No. e53126.
  8. Fuji M., Iida T., Takai C. et al. // J. Soc. Powder Technol. Japan. 2019. V. 56. P. 505.
  9. Liu X., Chen Y., Liu H. et al. // J. Mater. Sci. Tech. 2017. V. 33. No. 3. P. 239.
  10. Cao X., Chuan X., Li Sh. et al. // Part. Part. Syst. Charact. 2016. V. 33. P. 110.
  11. Cao S., Zhao Z., Jin X. et al. // J. Mater. Chem. 2011. V. 21. P. 19124.
  12. Yamada Y., Mizutani M., Nakamura T. et al. // Chem. Mater. 2010 V. 22. P. 1695.
  13. Castillo S.I.R., Ouhajji S., Fokker S. et al. // Micropor. Mesopor. Mater. 2014. V. 195. P. 75.
  14. Liu H., Li H., Ding Z. et al. // J. Cluster Sci. 2012. V. 23. P. 273.
  15. Huang Z.F., Qu X.Y., Chen Zh. // J. Appl. Polym. Sci. 2015. V. 132. No. 19. Art. No. 41919.
  16. Ernawati L., Ogi T., Balgis R. et al. // Langmuir. 2016. V. 32. P. 338.
  17. Meng Q., Xiang S., Zhang K. et al. // J. Colloid Interface Sci. 2012. V. 384. No. 1. P. 22.
  18. Sun G., Chen Zh., Wang Sh. et al. // Colloid Polym. Sci. 2011. V. 289. P. 1397.
  19. Chu L., Zhang X., Niu W. et al. // J. Mater. Chem. C. 2019. V. 7. P. 7411.
  20. Yu Sh.-Zh., Niu W.-B., Wu S.-L. et al. // J. Mater. Chem. C. 2018. V. 6. P. 12814.
  21. Arai Y., Matsubara T., Kim H. et al. // AGC Research Report. 2021. V. 71. P. 7.
  22. Wang J., Xiao W., Wang J. et al. // Materials Lett. 2015. V. 142. P. 269.
  23. Winkelmann F., Albert R., Felderhoff M. // Energy Technol. 2021. V. 9. Art. No. 2001048.
  24. Landon P.B., Mo A.H., Zhang. C. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 9937.
  25. Liu N., Zhao S., Yang Z. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. No. 50. P. 47008.
  26. Nuasaen S., Tangboriboonrat P. // Prog. Org. Coat. 2015. V. 79. P. 83.
  27. Rennel C., Rigdahl M. // Colloid Polym. Sci. 1994. V. 272. P. 1111.
  28. McDonald C.J., Devon M.J. // Adv. Colloid Interface. 2002. V. 99. P. 181.
  29. Масалов В.М., Сухинина Н.С., Ходос И.И. и др. // Поверхн. Рентген., синхротрон., нейтрон. иссл. 2021. № 11. С. 68; Masalov V.M., Sukhinina N.S., Khodos I.I. et al. // J. Surf. Invest. X-Ray, Synchrotron Neutron Tech. 2021. V. 15. No. 6. P. 1174.
  30. Sukhinina N.S., Masalov V.M., Fursova T.N. et al. // Crystals. 2022. V. 12. No. 7. Art. No. 883.
  31. Масалов В.М., Сухинина Н.С., Емельченко Г.А. // ФТТ. 2011. Т. 53. № 6. С. 1072; Masalov V.M., Sukhinina N.S., Emel’chenko G.A. // Phys. Solid State. 2011. V. 53. No. 6. P. 1135.
  32. Masalov V.M., Sukhinina N.S., Kudrenko E.A. et al. // Nanotechnology. 2011. V. 22. No. 27. Art. No. 275718.
  33. Самаров Э.Н., Мокрушин А.Д., Масалов В.М. и др. // ФТТ. 2006. Т. 48. № 7. С. 1212; Samarov É.N., Mokrushin A.D., Masalov V.M. et al. // Phys. Solid State. 2006. V. 48. No. 7. P. 1280.
  34. García-Santamaría F., Míguez H., Ibisate M. et al. // Langmuir. 2002. V. 18. P. 1942.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

3.

Скачать (65KB)
4.

Скачать (55KB)

© Н.С. Сухинина, В.М. Масалов, И.И. Ходос, А.А. Жохов, Г.А. Емельченко, 2023