Hydrothermal synthesis of upconversion nanoparticles NaYF4:Yb,Er and their functionalization for use as biosensors

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using hydrothermal synthesis NaYF4:Yb,Er upconversion nanoparticles in the form of rods were obtained. To give the nanoparticles hydrophilic properties, their surface was modified by replacing the oleate shell with L-cysteine molecules without significant changes in their photophysical properties. Visible fading of the luminescence brightness of the modified upconversion nanoparticles wasn’t observed for months.

Sobre autores

E. Mityushkin

Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Autor responsável pela correspondência
Email: m1tyushck1n@yandex.ru
Russia, 420029, Kazan

D. Zharkov

Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: m1tyushck1n@yandex.ru
Russia, 420029, Kazan

A. Leontyev

Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: m1tyushck1n@yandex.ru
Russia, 420029, Kazan

L. Nurtdinova

Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: m1tyushck1n@yandex.ru
Russia, 420029, Kazan

A. Shmelev

Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: m1tyushck1n@yandex.ru
Russia, 420029, Kazan

V. Nikiforov

Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: m1tyushck1n@yandex.ru
Russia, 420029, Kazan

Bibliografia

  1. Shen J., Zhao L., Han G. // Adv. Drug Deliv. Rev. 2013. V. 65. P. 744.
  2. Gu Z., Yan L., Tian G. et al. // Adv. Mater. 2013. V. 25. P. 3758.
  3. Rosal B., Jaque D. // Meth. Appl. Fluoresc. 2019. V. 7. No. 2. Art. No. 022001.
  4. Li H., Tan M., Wang X. et al. // J. Amer. Chem. Soc. 2020. V. 142. P. 2023.
  5. Jiang W., Yi J., Li X. et al. // Biosensors. 2022. V. 12. P. 1036.
  6. Arai M.S., de Camargo A.S.S. // Nanoscale Adv. 2021. V. 3. No. 18. P. 5135.
  7. Lee G., Park Y.I. // Nanomaterials. 2018. V. 8. P. 511.
  8. Zhang L., Jin D., Stenze M.H. // Biomacromolecules. 2021. V. 22. No. 8. P. 3168.
  9. Li H., Liu J., Wang Y. et al. // Front. Chem. 2022. V. 10. Art. No. 996264.
  10. Shi Z., Zhang. K., Zada S. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. No. 11. P. 12600.
  11. Han Y., An Y., Jia G. et al. // Nanoscale. 2018. V. 10. P. 6511.
  12. Rafique R., Kailasa S.K., Park T.J. // TrAC. Trends Analyt. Chem. 2020. V. 120. P. 115646.
  13. Zou W.Q., Visser C., Maduro J.A. et al. // Nature Photonics. 2012. V. 6. P. 560.
  14. Heer S., Kömpe K., Güdel H.U., Haase M. // Adv. Mater. 2004. V. 16. P. 2102.
  15. Жарков Д.К., Шмелев А.Г., Леонтьев А.В. и др. // Изв. РАН. Сер физ. 2020. Т. 84. № 3. С. 317; Zharkov D.K., Shmelev A.G., Leontyev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 3. P. 241.
  16. Tu D., Liu Y., Zhu H. et al. // Angew. Chem. Int. Ed. 2013. V. 125. P. 1166.
  17. Krämer K.W., Biner D., Frei G. et al. // Chem. Mater. 2004. V. 16. P. 1244.
  18. Gao C., Zheng P., Liu Q. et al. // Nanomaterials. 2021. V. 11. P. 2474.
  19. Wei Z., Sun L., Liu J. et al. // Biomaterials. 2014. V. 35. P. 387.
  20. Rabenau A. // Angew. Chem. Int. Ed. 1985. V. 24. P. 1026.
  21. Sun C., Schäferling M., Resch-Genger U. et al. // Chem. Nano Mater. 2021. V. 7. P. 174.
  22. Shang Y., Hao S., Liu J. et al. // Nanomaterials. 2015. V. 5. P. 218.
  23. Ding M., Chen D., Yin S. et al. // Sci. Reports. 2015. V. 5. P. 12745.
  24. Li C., Lin J. // J. Mater. Chem. 2010. V. 20. P. 6831.
  25. Zeng S., Ren G., Xu C. et al. // Cryst. Eng. Comm. 2011. V. 13. P. 1384.
  26. Ren G., Zeng S., Hao J. // J. Phys. Chem. C. 2011. V. 115. P. 20141.
  27. Wen X., Yang J., He B. et al. // Current Appl. Phys. 2008. V. 8. P. 535.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (323KB)
3.

Baixar (1MB)
4.

Baixar (71KB)
5.

Baixar (83KB)
6.

Baixar (86KB)

Declaração de direitos autorais © Е.О. Митюшкин, Д.К. Жарков, А.В. Леонтьев, Л.А. Нуртдинова, А.Г. Шмелев, В.Г. Никифоров, 2023