The influence of magnetic film anisotropy on the frequency-modulated signal detection
- Autores: Asadullin F.F.1, Pleshev D.A.1,2, Vlasov V.S.2, Shcheglov V.I.3
-
Afiliações:
- Saint Petersburg State Forestry University
- Syktyvkar State University
- Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
- Edição: Volume 87, Nº 3 (2023)
- Páginas: 383-389
- Seção: Articles
- URL: https://rjsvd.com/0367-6765/article/view/654457
- DOI: https://doi.org/10.31857/S0367676522700673
- EDN: https://elibrary.ru/HGHRMU
- ID: 654457
Citar
Resumo
We studied the possibility of using a magnetostriction converter for detecting a microwave signal with frequency modulation. The magnetization vector and elastic displacement oscillations in a normally magnetized ferrite film with crystallographic anisotropy are considered. We analyzed the effect of crystallographic cell orientation on the nature of the magnetization dynamics and elastic displacement oscillations, the establishment of various oscillation modes, and the detection process.
Sobre autores
F. Asadullin
Saint Petersburg State Forestry University
Autor responsável pela correspondência
Email: aff@sfi.komi.com
Russia, 194021, St. Petersburg
D. Pleshev
Saint Petersburg State Forestry University; Syktyvkar State University
Email: aff@sfi.komi.com
Russia, 194021, St. Petersburg; Russia, 167001, Syktyvkar
V. Vlasov
Syktyvkar State University
Email: aff@sfi.komi.com
Russia, 167001, Syktyvkar
V. Shcheglov
Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
Email: aff@sfi.komi.com
Russia, 125009, Moscow
Bibliografia
- Голямина И.П. Физика и техника мощного ультразвука. Кн. 1. Источники мощного ультразвука. М.: Наука, 1967. С. 111.
- Comstock R.L., LeCraw R.C. // J. Appl. Phys. 1963. V. 34. No. 10. P. 3022.
- Eshbach J.R. // JAP. 1963. V. 34. No. 4. P. 1298.
- Schlömann E., Joseph R.I., Kohane T. // Proc. IEEE. 1965. V. 53. No. 10. P. 1495.
- Семенцев Д.И., Шутый А.М. // УФН. 2007. Т. 177. № 8. С. 831; Sementsov D.I., Shutyi A.M. // Phys. Usp. 2007. V. 50. P. 793.
- Гуляев Ю.В., Зильберман П.Е., Темирязев А.Г., Тихомирова М.П. // ФТТ. 2000. Т. 42. № 6. С. 1062; Gulyaev Yu.V., Zil’berman P.E., Temiryazev A.G., Tikhomirova M.P. // Phys. Solid State. 200. V. 42. No. 6. P. 1094.
- Kirushev M.S., Vlasov V.S., Kotov L.N. et al. // Solid State Phenom. 2015. V. 233–234. P. 73.
- Chang C.L., Tamming R.R., Broomhall T.J., Janusonis J. // Phys. Rev. Appl. 2018. V. 10. No. 3. Art. No. 034068.
- Wei-Gang Yang, Holger Schmidt // Appl. Phys. Rev. 2021. V. 8. Art. No. 021304.
- Локк Э.Г., Герус С.В., Анненков А.Ю. // Радиотехн. и электрон. 2018. Т. 63. № 10. С. 1089; Lokk E.G., Gerus S.V., Annenkov A.Yu. // J. Commun. Technol. Electron. 2018. V. 63. No. 10. P. 1197.
- Чупров И.А., Асадуллин Ф.Ф., Плешев Д.А. и др. // Челябин. физ.-мат. журн. 2021. Т. 6. № 2. С. 237.
- Плешев Д.А., Асадуллин Ф.Ф., Власов В.С. и др. // Физ. мет. и металловед. 2022. Т. 123. № 3. С. 320; Pleshev D.A., Asadullin F.F., Vlasov V.S. et al. // Phys. Metal. Metallogr. 2022. V. 123. No. 3. P. 276.
- Власов В.С., Плешев Д.А., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектрон. 2020. № 7. С. 8.
Arquivos suplementares
