Impedance-matched ceramic materials based on ferrospinels
- Authors: Serebryannikov S.V.1, Dolgov A.V.1, Serebryannikov S.S.1, Kovalchuk V.G.2, Belevtsev A.M.2, Epaneshnikova I.K.2, Kryuchkov V.L.2
-
Affiliations:
- National Research University “MPEI”
- Moscow Aviation Institute (National Research University)
- Issue: Vol 88, No 11 (2024)
- Pages: 1753–1757
- Section: Electromagnetic field and materials (fundamental physical research)
- URL: https://rjsvd.com/0367-6765/article/view/682565
- DOI: https://doi.org/10.31857/S0367676524110159
- EDN: https://elibrary.ru/FKIETN
- ID: 682565
Cite item
Abstract
We studied the frequency spectra of the dielectric and magnetic permittivity, as well as the dielectric and magnetic losses of ferrospinels made by sintering by solid-phase reaction from the initial reagent [(NiCuZn)OMnO2]Fe₂O₃. We considered various systems of ferrites with a sign-varying temperature coefficient of magnetic saturation. Such systems are of practical interest for use in devices that require impedance matching, while at the same time providing stability magnetization in the specified temperature range (from –40 to 100 °C), which can vary by no more than 5%. The results of studying ferrospinels in the frequency ranges from 1 MHz to 3 GHz are discussed.
About the authors
S. V. Serebryannikov
National Research University “MPEI”
Author for correspondence.
Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 111250
A. V. Dolgov
National Research University “MPEI”
Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 111250
S. S. Serebryannikov
National Research University “MPEI”
Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 111250
V. G. Kovalchuk
Moscow Aviation Institute (National Research University)
Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 121552
A. M. Belevtsev
Moscow Aviation Institute (National Research University)
Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 121552
I. K. Epaneshnikova
Moscow Aviation Institute (National Research University)
Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 121552
V. L. Kryuchkov
Moscow Aviation Institute (National Research University)
Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 121552
References
- Ullah M.A., Keshavarz R., Abolhasa M. et al. // IEEE Access. 2022. V. 10. P. 17231.
- Zheng W., Ye W., Yang P. et al. // Molecules. 2022. V. 27. No. 13. P. 4117.
- Cheng J., Zhang H., Ning M. et al. // Adv. Funct. Mater. 2022. V. 32. No. 23. Art. No. 2200123.
- Серебрянников С.В., Серебрянников С.С., Долго А.И. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1264; Serebryannikov S.V., Serebryannikov S.S., Dolgo A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1047.
- Vinnik D.A., Zhivulin V.E., Sherstyuk D.P. et al. // Mater. Today Chem. 2021. V. 20. Art. No. 100460.
- Hill M.D., Polisetty S., Griffith C.M. Composite hexagonal ferrite materials. Patent US109950034B2. 2017.
- Mathews S.A., Babu D.R // Curr. Appl. Phys. 2021. V. 29. P. 39.
- Krowne C.M. // IEEE Trans. Microw. Theory Techn. 2022. V. 70. No. 4. P. 2087.
- Matytsin S.M., Hock K.M., Liu L. et al. // J. Appl. Phys. 2003 V. 94 P. 1146.
- Телегин А.В., Сухоруков Ю.П., Бебенин Н.Г. // ЖЭТФ. 2020. Т. 158. № 6. С. 1118; Telegin A.V., Sukhorukov Y.P., Bebenin N.G. // JETP. 2020. V. 131. P. 970.
- Kuroda S., Yamaura T., Iga A., Okayama K. Antenna apparatus. Patent US7482977B2. 2004.
- Barba‐Juan A., Mormeneo‐Segarra A., Vicente N. et al. // J. Amer. Ceram. Soc. 2022. V. 105. No. 4. P. 2725.
- Розанов К.Н., Старостенко С.Н. // Радиотехн. и электрон. 2003. Т. 48. С. 715.
- Caratelli D., Al-Rawi A., Song J., Favreau D. // Microwave J. 2020. V. 63. No. 2. P. 36.
- Sato-Akaba H., Tseytlin M. // J. Magn. Res. 2019. V. 304. P. 42.
- Yoshikawa H., Hiramatsu N., Uchimura H., Yonehara M. // Electron. Commun. Japan. 2021. V. 104. No. 2. Art. No. e12309.
- Cеребрянников С.В., Черкасов А.П., Серебрянников С.С., Костин П.И. // Изв. РАН. Сер. физ. 2018. Т. 82. № 8. С. 1030; Serebryannikov S.V., Cherkasov A.P., Serebryannikov S.S., Konshin P.I. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 8. P. 928.
- Mahalakshmi S., Jayasri R., Nithiyanatham S. et al. // Appl. Surface Sci. 2019. V. 494. P. 51.
- Qin M., Zhang L., Wu H. // Adv. Science. 2022. V. 9. No. 10. Art. No. 2105553.
- Gonçalves J.M., de Faria L.V., Nascimento A. et al. // Analyt. Chim. Acta. 2022. V. 1233. Art. No. 340362.
- Белоус А.И., Марданов М.К, Шведов С.В. СВЧ-электроника в системах радиолокации связи. Технологическая энциклопедия. Кн. 1. М.: Техносфера, 2021.
- Родионов С.А., Мерзликин А.М. // ЖЭТФ. 2022. Т. 161. № 5. С. 702; Rodionov S.A., Merzlikin A.M. // JETP. 2022. V. 134. No. 5. P. 600.
- Wang J., Lou J., Wang J.F. et al. // J. Phys. D. Appl. Phys. 2022. V. 55. No. 30. Art. No. 303002.
- Serebryannikov S.V., Cherkasov A.P., Serebryannikov S.S. et al. // Proc. SPIE. 2018. V. 10800. Art. No. 108000J.
- Шипко М.Н., Коровушкин В.В., Костишин В.Г. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 2. С. 232; Shipko M.N., Korovushkin V.V., Kostishin V.G. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 2. P. 203.
- Nikolaev E.V., Lysenko E.N., Bobuyok S., Surzhikov A.P. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 549.
- Al-Onaizan M.H., Ril’ A.I., Semin A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. S1. P. S122.
Supplementary files
