Impedance-matched ceramic materials based on ferrospinels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the frequency spectra of the dielectric and magnetic permittivity, as well as the dielectric and magnetic losses of ferrospinels made by sintering by solid-phase reaction from the initial reagent [(NiCuZn)OMnO2]Fe₂O₃. We considered various systems of ferrites with a sign-varying temperature coefficient of magnetic saturation. Such systems are of practical interest for use in devices that require impedance matching, while at the same time providing stability magnetization in the specified temperature range (from –40 to 100 °C), which can vary by no more than 5%. The results of studying ferrospinels in the frequency ranges from 1 MHz to 3 GHz are discussed.

About the authors

S. V. Serebryannikov

National Research University “MPEI”

Author for correspondence.
Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 111250

A. V. Dolgov

National Research University “MPEI”

Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 111250

S. S. Serebryannikov

National Research University “MPEI”

Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 111250

V. G. Kovalchuk

Moscow Aviation Institute (National Research University)

Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 121552

A. M. Belevtsev

Moscow Aviation Institute (National Research University)

Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 121552

I. K. Epaneshnikova

Moscow Aviation Institute (National Research University)

Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 121552

V. L. Kryuchkov

Moscow Aviation Institute (National Research University)

Email: SerebriannikSV@mpei.ru
Russian Federation, Moscow, 121552

References

  1. Ullah M.A., Keshavarz R., Abolhasa M. et al. // IEEE Access. 2022. V. 10. P. 17231.
  2. Zheng W., Ye W., Yang P. et al. // Molecules. 2022. V. 27. No. 13. P. 4117.
  3. Cheng J., Zhang H., Ning M. et al. // Adv. Funct. Mater. 2022. V. 32. No. 23. Art. No. 2200123.
  4. Серебрянников С.В., Серебрянников С.С., Долго А.И. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1264; Serebryannikov S.V., Serebryannikov S.S., Dolgo A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1047.
  5. Vinnik D.A., Zhivulin V.E., Sherstyuk D.P. et al. // Mater. Today Chem. 2021. V. 20. Art. No. 100460.
  6. Hill M.D., Polisetty S., Griffith C.M. Composite hexagonal ferrite materials. Patent US109950034B2. 2017.
  7. Mathews S.A., Babu D.R // Curr. Appl. Phys. 2021. V. 29. P. 39.
  8. Krowne C.M. // IEEE Trans. Microw. Theory Techn. 2022. V. 70. No. 4. P. 2087.
  9. Matytsin S.M., Hock K.M., Liu L. et al. // J. Appl. Phys. 2003 V. 94 P. 1146.
  10. Телегин А.В., Сухоруков Ю.П., Бебенин Н.Г. // ЖЭТФ. 2020. Т. 158. № 6. С. 1118; Telegin A.V., Sukhorukov Y.P., Bebenin N.G. // JETP. 2020. V. 131. P. 970.
  11. Kuroda S., Yamaura T., Iga A., Okayama K. Antenna apparatus. Patent US7482977B2. 2004.
  12. Barba‐Juan A., Mormeneo‐Segarra A., Vicente N. et al. // J. Amer. Ceram. Soc. 2022. V. 105. No. 4. P. 2725.
  13. Розанов К.Н., Старостенко С.Н. // Радиотехн. и электрон. 2003. Т. 48. С. 715.
  14. Caratelli D., Al-Rawi A., Song J., Favreau D. // Microwave J. 2020. V. 63. No. 2. P. 36.
  15. Sato-Akaba H., Tseytlin M. // J. Magn. Res. 2019. V. 304. P. 42.
  16. Yoshikawa H., Hiramatsu N., Uchimura H., Yonehara M. // Electron. Commun. Japan. 2021. V. 104. No. 2. Art. No. e12309.
  17. Cеребрянников С.В., Черкасов А.П., Серебрянников С.С., Костин П.И. // Изв. РАН. Сер. физ. 2018. Т. 82. № 8. С. 1030; Serebryannikov S.V., Cherkasov A.P., Serebryannikov S.S., Konshin P.I. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 8. P. 928.
  18. Mahalakshmi S., Jayasri R., Nithiyanatham S. et al. // Appl. Surface Sci. 2019. V. 494. P. 51.
  19. Qin M., Zhang L., Wu H. // Adv. Science. 2022. V. 9. No. 10. Art. No. 2105553.
  20. Gonçalves J.M., de Faria L.V., Nascimento A. et al. // Analyt. Chim. Acta. 2022. V. 1233. Art. No. 340362.
  21. Белоус А.И., Марданов М.К, Шведов С.В. СВЧ-электроника в системах радиолокации связи. Технологическая энциклопедия. Кн. 1. М.: Техносфера, 2021.
  22. Родионов С.А., Мерзликин А.М. // ЖЭТФ. 2022. Т. 161. № 5. С. 702; Rodionov S.A., Merzlikin A.M. // JETP. 2022. V. 134. No. 5. P. 600.
  23. Wang J., Lou J., Wang J.F. et al. // J. Phys. D. Appl. Phys. 2022. V. 55. No. 30. Art. No. 303002.
  24. Serebryannikov S.V., Cherkasov A.P., Serebryannikov S.S. et al. // Proc. SPIE. 2018. V. 10800. Art. No. 108000J.
  25. Шипко М.Н., Коровушкин В.В., Костишин В.Г. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 2. С. 232; Shipko M.N., Korovushkin V.V., Kostishin V.G. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 2. P. 203.
  26. Nikolaev E.V., Lysenko E.N., Bobuyok S., Surzhikov A.P. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 549.
  27. Al-Onaizan M.H., Ril’ A.I., Semin A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. S1. P. S122.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences