Chiral thin film structures based on arrays of cobalt nanospirals obtaned by oblique deposition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of experimental studies of chiral thin film structures based on arrays of cobalt nanospirals obtained by oblique angle deposition are presented. It has been shown that in the conditions of electron-beam evaporation on rotating tilted substrate arrays of nanospirals winded in the same direction are formed. By varying substrate rotation speed it is possible to change geometrical sizes of those helixes (helix pitch, helix radius). As obtained metasurface showed distinct asymmetry of optical characteristics at the reflection of right and left circular polarized light.

Full Text

Restricted Access

About the authors

O. S. Trushin

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Author for correspondence.
Email: ostrushin@mail.ru

Yaroslavl Branch

Russian Federation, Yaroslavl

I. S. Fattakhov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru

Yaroslavl Branch

Russian Federation, Yaroslavl

A. A. Popov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru

Yaroslavl Branch

Russian Federation, Yaroslavl

L. A. Mazaletsky

Valiev Institute of Physics and Technology of the Russian Academy of Sciences; Demidov Yaroslavl State University

Email: ostrushin@mail.ru

Yaroslavl Branch

Russian Federation, Yaroslavl; Yaroslavl

R. A. Gaidukasov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru
Russian Federation, Moscow

A. V. Miakonkikh

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ostrushin@mail.ru
Russian Federation, Moscow

References

  1. Gansel J.K., Thiel M., Rill M.S. et al. // Science. 2009. V. 325. P. 1513.
  2. Gibbs J. G., Mark A.G., Eslami S. et al. // Appl. Phys. Lett. 2013. V. 103. Art. No. 213101.
  3. Lee S.H., Singh D.P., Sung J.H. et al. // Sci. Reports. 2016. V. 6. P. 19580.
  4. Kim J., Rana A.S., Kim Y. et al. // Sensors. 2021. V. 21. P. 4381.
  5. Трушин О.С., Попов А.А., Пестова А Н. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 650. Trushin O.S., Popov A.A., Pestova A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 542.
  6. Fujiwara H. Spectroscopic ellipsometry principles and applications. John Wiley & Sons Ltd. 2007.
  7. Мяконьких А.В., Смирнова Е.А., Клементе И.Э. // Микроэлектроника. 2021. Т. 50. № 4. С. 264. // Miakonkikh A.V., Smirnova E.A., Klemente I.E. // Russ. Microelectron. 2021. V. 50. Nо. 4. P. 230.
  8. Трушин О.С., Фаттахов И.C., Попов А.А. и др. // ФТТ. 2023. Т. 65. № 6. С. 996. // Trushin O.S., Fattakhov I.S., Popov A.A. et al. // Phys. Solid State 2023. V. 65. No. 6. P. 953.
  9. Faryad M., Lakhtakia A. // Adv. Opt. Photon. 2014. V. 6. P. 225.
  10. Schaferling M. Chiral nanophotonics. SSOS. V. 205. Springer International Publishing, 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microscopic images of nanostructured Co/Si films obtained at different substrate rotation speeds: 0.3 rpm – cross section (a) and top view (b), 0.6 rpm – cross section (c), 1.6 rpm – cross section (d).

Download (40KB)
3. Fig. 2. Dependences of the degree of polarization of the reflected wave on the wavelength of the used radiation for two types of incident circularly polarized waves (right-handed-R and left-handed-L) for samples with different rotation speeds: 0.2 (a), 0.3 (b), 0.6 (c) and 1.6 rpm (d).

Download (27KB)

Copyright (c) 2024 Russian Academy of Sciences