Atomistic simulation of self-diffusion in nickel grain boundaries
- Authors: Urazaliev M.G.1, Stupak M.E.1, Popov V.V.1
-
Affiliations:
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 88, No 9 (2024)
- Pages: 1352–1359
- Section: Condensed Matter Physics
- URL: https://rjsvd.com/0367-6765/article/view/681818
- DOI: https://doi.org/10.31857/S0367676524090034
- EDN: https://elibrary.ru/OELQKZ
- ID: 681818
Cite item
Abstract
The self-diffusion coefficient for symmetrical tilt boundaries and for the general type of grain boundaries in nickel has been calculated by atomistic simulation methods. The special tilt grain boundaries have been simulated in the bicrystal model, and the general type of grain boundaries in the nanocrystal model. The self-diffusion coefficient is presented as a temperature dependence. The activation energies of self-diffusion have been determined.
Full Text

About the authors
M. G. Urazaliev
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: urazaliev@imp.uran.ru
Russian Federation, Ekaterinburg
M. E. Stupak
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: urazaliev@imp.uran.ru
Russian Federation, Ekaterinburg
V. V. Popov
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: urazaliev@imp.uran.ru
Russian Federation, Ekaterinburg
References
- Кульков В.Г. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1232; Kul’kov V.G. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1043.
- Звягинцева А.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1290; Zvyginceva A.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1097.
- Mishin Y., Herzig C. // Mater. Sci. Eng. A. 1999. V. 260. P. 55.
- Kaur I., Mishin Y., Gust W. Fundamentals of grain and interphase boundary diffusion. John Wiley, 1995. 5536 p.
- Budke E., Herzig C., Prokofjev S., Shvindlerman L.S. // Mater. Sci. Forum. 1996. V. 207. P. 465.
- Suzuki A., Mishin Y. // Interface Sci. 2003. V. 11. P. 131.
- Nomura M., Adams J.B. // J. Mater. Res. 1992. V. 7. P. 3202.
- Keblinski P., Wolf D., Phillpot S.R., Gleiter H. // Philos. Mag. A. 1999. V. 79. P. 2735.
- Sorensen M.R., Mishin Y., Voter A.F. // Phys. Rev. B. 2000. V. 62. No. 6. P. 3658.
- Mendelev M.I., Zhang H., Srolovitz D.J. // J. Mater. Res. 2005. V. 20. P. 1146.
- Mishin Y., Asta M., Li J. // Acta Mater. 2010. V. 58. P. 1117.
- Bai X.M., Voter A.F., Hoagland R.G. et al. // Science. 2010. V. 327. P. 1631.
- Bai X.M., Vernon L.J., Hoagland R.G. et al. // Phys. Rev. B. 2012. V. 85. P. 214103.
- Uberuaga B.P., Vernon L.J., Martinez E., Voter A.F. // Sci. Reports. 2015. V. 5. No. 1. P. 9095.
- Mohammadzadeh R., Mohammadzadeh M. // J. Appl. Phys. 2018. V. 124. Art. No. 035102.
- Wang Y.J., Gao G.J.J., Ogata S. // Phys Rev. B. 2013. V. 88. Art. No. 115413.
- Mohammadzadeh M., Mohammadzadeh R. // Comput. Mater. Sci. 2017. V. 129. P. 239.
- Mohammadzadeh R. // J. Appl. Phys. 2019. V. 125. No. 13. P. 135103.
- Bokstein B.S. // NSMs. 1995. V. 6. P. 873.
- Yamakov P.V., Wolf D., Phillpot S.R., Gleiter H. // Acta Mater. 2002. V. 50. No. 1. P. 61.
- Shvindlerman L. S., Gottstein G., Ivanov V. A. et al. // J. Mater. Sci. 2006. V. 41. P. 7725.
- Plimpton S. // J. Comput. Phys. 1995. V. 117. No. 1. P. 1.
- Stukowski A. // Mater. Sci. Eng. 2010. V. 18. Art. No. 015012.
- Семенов М.Ю., Королев И.П., Арестов В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 948; Semenov M.Yu., Korolev I.P., Arestov V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 728.
- Stoller R.E., Tamm A., Béland L.K. et al. // J. Chem. Theory Comput. 2016. V. 12. No. 6. P. 2871.
- Уразалиев М.Г., Ступак М.Е., Попов В.В. // Физ. металл. металловед. 2021. Т. 122. С. 713; Urazaliev M.G., Stupak M.E., Popov V.V. // Phys. Metals. Metallogr. 2021. V. 122. P. 665.
- Polyak B.T. // USSR Comput. Math. Math. Phys. 1969. V. 9. No. 4. P. 94.
- Tschopp M.A., Solanki K.N., Gao F. et al. // Phys. Rev. B. 2012. V. 85. Art. No. 064108.
- Nosé S. // J. Chem. Phys. 1984. V. 81. No. 1. P. 511.
- Hoover W.G., Holian B.L. // Phys. Lett. Sect. A. 1996. V. 211. P. 253.
- Hirel P. // Comput. Phys. Comm. 2015. V. 197. P. 212.
- Wagih M., Schuh C.A. // Scripta Mater. 2023. V. 237. Art. No. 115716.
- Starikov S., Mrovec M., Drautz R. // Acta Mater. 2020. V.188. P. 560.
- Frolov T., Olmsted D., Asta M. et al. // Nature Commun. 2013. V. 4. No. 1. Art. No. 1899.
- Maxwell-Garnett J.C., Larmor J.Xii // Philos. Trans. Royal Soc. Lond. A. Contain. Pap. Math. Phys. Char. 1904. V. 203. No. 359–371. P. 385.
- Hart E.W. // Acta Metallurg. 1957. V. 5. No. 10. P. 597.
- Faken D., Jónsson H. // Comput. Mater. Sci. 1994. V. 2. No. 2. P. 279.
- Fultz B., Frase H. // Hyperfine Interact. 2000. V. 130. P. 81.
- Canon R.F, Stark J.P. // J. Appl. Phys. 1969. V. 40. No. 11. P. 4366.
- Бокштейн С.З., Кишкин С.Т., Мишин Ю.М., Разумовский И.М. // Докл. АН СССР. 1985. Т. 280. № 5. C. 1125.
- https://drive.google.com/drive/folders/117hFltef46fj3GGeHexiGVwocHSHv4J-?usp=drive_link
- http://dx.doi.org/10.13140/RG.2.2.23789.60641
Supplementary files
