Regularities and mechanisms of composition influence on magnetic and nonlinear electrical characteristics of La-Sr manganites with combined substitution for manganese

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The data are shown on magnetic properties and peculiarities of current-voltage characteristics of manganites with substitution of (Fe3+0.5Sc3+0.5), (Ni2+0.5Ge4+0.5), (Zn2+0.5Ge4+0.5), (Mg2+0.5Ge4+0.5) ions pairs for manganese in La-Sr system. The samples containing (Fe, Sc), (Ni, Ge) and (Zn, Ge) have S-shaped sections of negative differential resistance, and (Mg, Ge)-substituted manganite exhibits the property of voltage stabilization.

Full Text

Restricted Access

About the authors

V. K. Karpasyuk

Astrakhan State University

Email: derzh_igor@mail.ru
Russian Federation, Astrakhan

A. G. Badelin

Astrakhan State University

Email: derzh_igor@mail.ru
Russian Federation, Astrakhan

I. M. Derzhavin

Astrakhan State University

Author for correspondence.
Email: derzh_igor@mail.ru
Russian Federation, Astrakhan

S. Kh. Estemirova

Astrakhan State University; Institute for Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: derzh_igor@mail.ru
Russian Federation, Astrakhan; Yekaterinburg

D. I. Merkulov

Astrakhan State University

Email: derzh_igor@mail.ru
Russian Federation, Astrakhan

References

  1. Abdel-Latif I.A. // J. Physics. 2012. V. 1. No. 3. P. 15.
  2. Бебенин Н.Г., Зайнуллина Р.И., Устинов В.В. // УФН. 2018. Т. 188. № 8. С. 801; Bebenin N.G., Zainullina R.I., Ustinov V.V. // Phys. Usp. 2018. V. 61. No. 8. P. 719.
  3. Россоленко А.Н., Тулина Н.А., Шмытько И.М. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 541; Rossolenko A.N., Tulina N.A., Shmytko I.M. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 468.
  4. Pergament A., Stefanovich G., Malinenko V., Velichko A. // Adv. Cond. Matter Phys. 2015. V. 15. Art. No. 654840.
  5. Guha A., Khare N., Raychaudhuri A.K., Rao C.N.R. // Phys. Rev. B. 2000. V. 62. Art. No. R11941(R).
  6. Камилов И.К., Алиев К.М., Ибрагимов X.О., Абакарова Я.С. // Письма в ЖЭТФ. 2003. Т. 78. № 8. С. 957; Kamilov I.K., Aliev K.M., Ibragimov Kh.O., Abakarova N.S. // JETP Lett. 2003. V. 78. No. 8. P. 485.
  7. Karpasyuk V.K., Badelin A.G., Smirnov A.M. et al. // J. Phys. Conf. Ser. 2010. V. 200. Art. No. 052026.
  8. Belogolovskii M.A. // Cent. Eur. J. Phys. 2009. V. 7. No. 2. P. 304.
  9. Bagdzevicius S., Maas K., Boudard M., Burriel M. // J. Electroceram. 2017. V. 39. P. 157.
  10. Сизов В.Е., Шайхулов Т.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 10. С. 1507; Sizov V.E., Shaikhulov T.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 10. P. 1540.
  11. Баделин А.Г., Державин И.М., Карпасюк В.К., Эстемирова С.Х. // Изв. РАН. Сер. физ. 2023. T. 87. № 3. C. 396; Badelin A.G., Derzhavin I.M., Karpasyuk V.K., Estemirova S. Kh. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 343.
  12. Волков Д.В., Назаренко А.В., Шилкина Л.А., Вербенко И.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1248; Volkov D.V., Nazarenko A.V., Shilkina L.A., Verbenko I.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1288.
  13. Гамзатов А.Г., Гудин С.А., Арсланов Т.Р. и др. // Письма в ЖЭТФ. 2022. Т. 115. № 3—4 (2). С. 218; Gamzatov A.G., Arslanov T.R., Gudin S.A et al. // JETP Lett. 2022. V. 115. No. 4. P. 190.
  14. Fisher B., Genossar J., Patlagan L., Reisner G.M. // EPJ Web Conf. 2013. V. 40. Art. No. 15009.
  15. Baikalov A., Wang Y.Q., Shen B. et al. // Appl. Phys. Lett. 2003. V. 83. P. 957.
  16. Nian Y.B., Strozier J., Wu N.J. et al. // Phys. Rev. Lett. 2007. V. 98. Art. No. 146403.
  17. D’yachenko O.I., Tarenkov V.Yu., Boliasova O.O., Krivoruchko V.M. // Metallofiz. Noveishie Tekhnol. 2018. V. 40(3). P. 291.
  18. Shaykhutdinov K.A., Popkov S.I., Balaev D.A. et al. // Phys. B. Cond. Matter. 2010. V. 405(24). P. 4961.
  19. Tsendin K. // Phys. Stat. Solidi B. 2009. V. 246. P. 1831.
  20. Babushkina N.A., Belova L.M., Khomskii D.I. et al. // Phys. Rev. B. 1999. V. 59. Art. No. 6994.
  21. Tulina N.A., Uspenskaya L.S., Sirotkin V.V. et al. // Phys. C. 2006. V. 444. P. 19.
  22. Povzner A.A., Volkov A.G. // J. Magn. Magn. Mater. 2017. V. 432. P. 466.
  23. Böttger H., Bryksin V.V. Hopping conduction in solids. Berlin: Akademie Verlag, 1985. 169 p.
  24. Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751.
  25. Balagurov A.M., Bobrikov I.A., Pomyakushin V. Yu. et al. // JETP Lett. 2005. V. 82. No. 9. P. 594.
  26. Barandiaran J.M., Greneche J.M., Hernandez T. et al. // J. Phys. Cond. Matter. 2002. V. 4. No. 47. P. 12563.
  27. V’yunov O.I., Belous A.G., Tovstolytkin A.I., Yanchevskii O.Z. // J. Eur. Ceram. Soc. 2007. V. 27. No. 13—15. P. 3919.
  28. Pickett W., Singh D. // Europhys. Lett. 1995. V. 32. P. 759.
  29. Karpasyuk V.K., Badelin A.G., Derzhavin I.M. et al. // Int. J. Appl. Eng. Res. 2015. V. 10. No. 21. Art. No. 42746.
  30. Karpasyuk V.K., Badelin A.G., Derzhavin I.M. et al. // J. Magn. Magn. Mater. 2019. V. 476. P. 371.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM micrographs of the surface of manganites containing (Fe, Sc) (a), (Ni, Ge) (b), (ZnGe) (c), (Mg, Ge) (d).

Download (634KB)
3. Fig. 2. Temperature dependences of the resistance of (Fe, Sc)-containing manganite (1, 2) and (Ni, Ge)-substituted manganite (3, 4) at different strengths of the measuring electric field: 9.2 V/cm (1, 3); 14.0 V/cm (2, 4).

Download (19KB)
4. Fig. 3. CVC of (Fe, Sc)-substituted manganite at different temperatures: 1-130 K; 2-140 K; 3-160 K; 4-180 K; 5-200 K; 6-240 K.

Download (21KB)
5. Fig. 4. CVC of manganites containing (Ni, Ge) — 1; (Zn, Ge) — 2, 3; (Mg, Ge) — 4, 5 at different temperatures: 1—260 K; 2—200 K; 3—260 K; 4—200 K; 5—240 K.

Download (23KB)

Copyright (c) 2024 Russian Academy of Sciences