Dynamics of rising of an air bubble in a magnetic fluid shell in a magnetic field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of rising of an air bubble enclosed in a magnetic fluid shell in an external homogeneous magnetic field directed horizontally is investigated experimentally. It is shown that the magnetic field acting on the magnetic fluid shell leads to a change in the shape of the bubble, which in turn is reflected in the quantitative characteristics of the rising process. Oscillations in the shape of the air bubble during the rising process were also found. The obtained results indicate the possibility of realizing the control of small gas volumes, which may have practical applications.

Full Text

Restricted Access

About the authors

А. Ya. Simonovsky

North Caucasus Federal University; Stavropol State Agrarian University

Author for correspondence.
Email: simonovchkij@mail.ru
Russian Federation, Stavropol; Stavropol

A. R. Zakinyan

Stavropol State Agrarian University

Email: simonovchkij@mail.ru
Russian Federation, Stavropol

References

  1. Пуанкаре А. Фигуры равновесия жидкой массы. М.: Регулярная и хаотическая динамика, 2000.
  2. Liu H. Science and engineering of droplets. NY.: William Andrew Publishing, 1999.
  3. Taylor G.I. // Proc. Royal. Soc. Lond. A. 1964. V. 280. P. 383.
  4. Allan R.S., Mason S.G. // Proc. Royal. Soc. Lond. A 1962. V. 267. P. 45.
  5. Torza S., Cox R.G., Mason S.G. // Phil. Trans. Royal. Soc. Lond. A. 1971. V. 269. P. 295.
  6. Ширяева С.О., Петрушов Н.А., Григорьев А.И. // ЖТФ. 2019. Т. 89. № 8. С. 1183; Shiryaeva S.O., Petrushov N.A., Grigor’ev A.I. // Tech. Phys. 2019. V. 64. No. 8. P. 1116.
  7. Reznik S.N., Yarin A., Theron A., Zussman E. // J. Fluid Mech. 2004. V. 516. P. 349.
  8. Блум Э.Я., Майоров М.М., Цеберс А.О. Магнитные жидкости. Рига: Зинатне, 1989.
  9. Диканский Ю.И., Закинян А.Р. // ЖТФ. 2010. Т. 80. С. 8; Dikansky Y.I., Zakinyan A.R. // Tech. Phys. 2010. V. 55. No. P. 1082.
  10. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 804.
  11. Барков Ю.Д., Берковский Б.М. // Магнит. гидродинам. 1980. Т. 16. № 3. C. 11.
  12. Братухин Ю.К., Лебедев А.В. // ЖЭТФ. 2002. Т. 121. № 6. С. 1298; Bratukhin Yu.K., Lebedev A.V. // JETP. 2002. V. 94. No. 6. P. 1114.
  13. Ghaderi A., Kayhani M.H., Nazari M. // Eur. J. Mech. B. 2018. V. 72. P. 1.
  14. Shi D., Bi Q., He Y., Zhou R. // Exp. Therm. Fluid Sci. 2014. V. 54. P. 313.
  15. Korlie M.S., Mukherjee A., Nita B.G. et al. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 204143.
  16. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 300.
  17. Lee W.K., Scardovelli R., Trubatch A.D., Yecko P. // Phys. Rev. E. 2010. V. 82. Art. No. 016302.
  18. Soni P., Dixit D., Juvekar V.A. // Phys. Fluids. 2017. V. 29. Art. No. 112108.
  19. Soni P., Thaokar R.M., Juvekar V.A. // Phys. Fluids. 2018. V. 30. Art. No. 032102.
  20. Zentner C.A., Concellón A., Swager T.M. // ACS Cent. Sci. 2020. V. 6. P. 1460.
  21. Sokolov E., Kaluzhnaya D., Shel’deshova E., Ryapolov P. // Fluids. 2023. V. 8. Art. No. 2.
  22. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V., Kalyuzhnaya D.A., Vasilyeva A.O. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.
  23. Кутателадзе С.С., Накоряков В.Е. Тепломассообмен и волны в газожидкостных системах. Новосибирск: Наука, 1984.
  24. Gogosov V.V., Simonovskii A. Ya. // Magnetohydrodynamics. 1993. V. 29. P. 157.
  25. Behjatian A., Esmaeeli A. // Phys. Rev. E. 2013. V. 88. Art. No. 033012.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup: 1 — vessel, 2 — magnetic fluid, 3 — glycerin, 4 — tube for blowing out an air bubble, 5 — Helmholtz coils, 6 — digital video camera.

Download (110KB)
3. Fig. 2. Sequential frames of the transition of an air bubble during its ascent through the boundary of magnetic and non-magnetic liquids. The time interval between images is 20 ms. The magnetic field strength is 1.9 kA/m.

Download (124KB)
4. Fig. 3. Stages of the ascent of an air bubble in a magnetic fluid shell in a magnetic field of 9 kA/m.

Download (60KB)
5. Fig. 4. Time dependence of the angle of deviation of the major semi-axis of the bubble on the direction of the magnetic field.

Download (17KB)
6. Fig. 5. Dependence of the time it takes for a bubble to cross the boundary of magnetic and non-magnetic liquids on the magnetic field strength.

Download (17KB)
7. Fig. 6. Dependence on the magnetic field strength of the length of the leg connecting the rising bubble with the volume of magnetic fluid at which the rupture occurs.

Download (16KB)
8. Fig. 7. Dependence of the amplitude of air bubble oscillations on the intensity of the alternating magnetic field at different values ​​of the field frequency.

Download (20KB)
9. Fig. 8. Dependence of the ratio of the semiaxes of a compound bubble on the intensity of the external magnetic field. The dots are experimental data, the solid line is the calculation according to expression (1).

Download (22KB)

Copyright (c) 2024 Russian Academy of Sciences