Using magnetic composites to create controlled photon crystals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A photonic crystal was created using a magnetic fluid–epoxy resin composite. The amplitude-frequency characteristics of the reflection coefficient of electromagnetic radiation in the microwave range from the resulting structure were experimentally studied. The possibility of using magnetic composites to create controlled photonic crystals has been demonstrated.

Full Text

Restricted Access

About the authors

A. E. Postelga

Saratov National Research State University

Author for correspondence.
Email: sanyalace@list.ru
Russian Federation, Saratov

S. V. Igonin

Saratov National Research State University

Email: sanyalace@list.ru
Russian Federation, Saratov

J. A. Agapova

Saratov National Research State University

Email: sanyalace@list.ru
Russian Federation, Saratov

References

  1. Вендик И.Б., Вендик О.Г. // ЖТФ. 2013. Т. 83. № . 1. С. 3; Vendik I.B., Vendik O.G. // Tech. Phys. 2013. V. 58. No. 1. P. 1.
  2. Усанов Д.А., Никитов С.А., Скрипаль А.В. и др. // Электрон. Микроэлектрон. СВЧ. 2019. Т. 1. С. 194.
  3. Усанов Д.А., Мерданов М.К., Скрипаль А.В., Пономарев Д.В. // Изв. Сарат. ун-та. Нов. сер. Сер. Физ. 2015. Т. 15. № 1. С. 57.
  4. Su S.-C., Chang T.-H. // Appl. Phys. Lett. 2020. V. 116. No. 20. Art. No. 202904.
  5. Коренькова С.Ю., Тихонов И.А., Чубенко Е.Б. // Докл. БГУИР. 2020. Т. 18. № 6. С. 25.
  6. Hallouet B., Wetzel B., Pelster R. // J. Nanomaterials. 2007. V. 2007. Art. No. 34527.
  7. Teusdea A., Malaescu I., Sfirloaga P. // Materials. 2022. V. 15. No. 6. Art. No. 2309.
  8. Varshney S., Ohlan A., Jain V. et al. // Mater. Chem. Phys. 2014. V. 143. No. 2. P. 806.
  9. Бочкова Т.С., Игонин С.В., Усанов Д.А., Постельга А.Э. // Дефектоскопия. 2018. № 8. С. 41; Bochkova T.S., Igonin S.V., Usanov D.A., Postelga A.É. // Russ. J. Nondestruct. Test. 2018. V. 54. No. 8. P. 576.
  10. Turkin S.D., Dikansky Y.I. // Radiophys. Quantum Electron. 2021. V. 64. No. 4. P. 251.
  11. Philip J., Laskar J.M. // Adv. Coll. Interface Sci. 2023. V. 311. Art. No. 102810.
  12. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 300.
  13. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.
  14. Burya P., Černobilaa F., Veveričíka M. et al. // J. Magn. Magn. Mater. 2020. V. 501. Art. No. 16639.
  15. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  16. Гареев К.Г., Непомнящая Э.К. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 990; Gareev K.G., Nepomnyashchaya E.K. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 904.
  17. Ivey M., Liu J., Zhu Y., Cutillas S. // Phys. Rev. E. 2000. V. 63. Art. No. 011403.
  18. Zakinyan A., Dikansky Y., Bedzhanyan M. // J. Dispersion. Sci. Technol. 2014. V. 35. No. 1. P. 111.
  19. Zakinyan A., Dikansky Y. // Colloids Surf. 2011. V. 380. No. 1—3. P. 314.
  20. Туркин С.Д., Диканский Ю.И., Закинян А.Р., Константинова Н.Ю. // ЖТФ. 2021. Т. 91. № 1. С. 131; Turkin S.D., Dikansky Yu.I., Zakinyan A.R., Konstantinova N.Yu. // Tech. Phys. 2021. V. 66. No. 1. P. 124.
  21. Berejnov V., Raikher Yu., Cabuil V. et al. // J. Colloid Interface Sci. 1998. V. 199. P. 215.
  22. Усанов Д.А., Скрипаль А.В., Абрамов А.В., Боголюбов А.С. // ЖТФ. 2006. Т. 76. № 5. С. 112; Usanov D.A., Skripal A.V., Abramov A.V., Bogolyubov A.S. // Tech. Phys. 2006. V. 51. No. 5. P. 644.
  23. Райхер Ю.Л., Шлиомис М.И. // ЖЭТФ. 1974. Т. 67. С. 1060.
  24. Гехт Р.C., Игнатченко В.А., Райхер Ю.Л., Шлиомис М.И. // ЖЭТФ. 1976. Т. 70. С. 1300.
  25. Усанов Д.А., Скрипаль Ал.В., Скрипаль Ан.В. и др. // ЖТФ. 2006. Т. 76. № 11. С. 126; Usanov D.A., Skripal Al.V., Skripal An.V. et al. // Tech. Phys. 2006. V. 51. No. 11. P. 1520.
  26. Усанов Д.А., Постельга А.Э., Алтынбаев С.В. // ЖТФ. 2013. Т. 83. № 11. С. 30; Usanov D.A., Postel’ga A.É., Altynbaev S.V. // Tech. Phys. 2013. V. 58. No. 11. P. 1578.
  27. Диканский Ю.И., Закинян А.Р., Константинова Н.Ю. // ЖТФ. 2008. Т. 78. № 1. С. 21; Dikanski Yu.I., Zakinyan A.R., Konstantinova N. Yu. // Tech. Phys. 2008. V. 53. No. 1. P. 19.
  28. Кац Г.С., Милевски Д.В. Наполнители для полимерных композиционных материалов. М.: Химия, 1981. 736 с.
  29. Усанов Д.А., Скрипаль А.В., Романов А.В. // ЖТФ. 2011. Т. 81. № 1. С. 106; Usanov D.A., Skripal’ A.V., Romanov A.V. // Tech. Phys. 2011. V. 56. No. 11. P. 102.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of filling the waveguide with the structure under study: 1 — layers of polycor with a thickness of 1.0 mm, 2 — layers of fluoroplastic with a thickness of 9.8 mm, 3 — the sample under study with a thickness of 4 mm, j — layer number, zj, j+1 — distance from the surface of the structure to the boundary between layers with numbers j and j+1, Aj and Bj — amplitudes of incident and reflected electromagnetic waves in layer with number j.

Download (16KB)
3. Fig. 2. Photographs of epoxy resin – magnetic fluid composite samples: a) No. 1.2 – vff = 0.004, b) No. 1.4 – vff = 0.065, c) No. 1.6 – vff = 0.210, d) No. 1.7 – vff = 0.315.

Download (561KB)
4. Fig. 3. Frequency dependences of the reflection coefficient from a photonic crystal with a defect in the form of a composite layer with a volume fraction of magnetic fluid of 0.120 (sample No. 1.5), when applying a magnetic field of 600 mT: curve 1 is the theoretically calculated dependence using the effective volume fraction model, 2 is the experimental dependence.

Download (17KB)
5. Fig. 4. Frequency dependences of the reflection coefficient of a microwave electromagnetic wave from a photonic structure, a composite with a volume fraction of magnetic fluid of 0.350 is used as a violation: a) sample No. 1.8 without aerosil, curve 1 - in the absence of a magnetic field, curve 2 - when a magnetic field with induction of 300 mT is applied; b) sample No. 2.8 with a volume fraction of aerosil of 0.010, curve 1 - in the absence of a magnetic field, curve 2 - when a magnetic field with induction of 330 mT is applied.

Download (42KB)
6. Fig. 5. Dependence of the change in the reflection coefficient on the magnetic field induction; a composite with a volume fraction of magnetic fluid of 0.315 is used as a disturbance. Curve 1 is sample No. 1.7 (without Aerosil), curve 2 is sample No. 2.7 with a volume fraction of Aerosil of 0.010.

Download (24KB)
7. Fig. 6. Dependence of the suppression of the peak of the reflection coefficient ∆Rmax in a magnetic field on the volume fraction of the magnetic fluid (1 - samples No. 1.1-1.8 (without Aerosil), 2 - samples No. 2.1-2.8 (with Aerosil), 3 - theoretically calculated curve under the assumption of the effective volume fraction model.

Download (20KB)
8. Fig. 7. Photographs of samples of magnetic fluid – epoxy resin composite with a volume fraction of magnetic fluid of 0.350: a) sample No. 1.8 (without Aerosil), b) sample No. 2.8 (with Aerosil).

Download (170KB)
9. Fig. 8. Dependence of the minimum reflection coefficient when applying a magnetic field on the volume fraction of Aerosil in a composite with a volume fraction of magnetic fluid of 0.350 (samples No. 3.1-3.4).

Download (15KB)

Copyright (c) 2024 Russian Academy of Sciences