Magnetization features of small multi-core particles: theory and computer simulations

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We investigated the orientation texturing of magnetic moments of four magnetic nanoparticles fixed at the vertices of a regular tetrahedron and formed a separate polyhedral particle. Numerical calculations of the probability density of the magnetic moment orientation, the static magnetization and the initial magnetic susceptibility of a multi-core particle are obtained by the Monte-Carlo method.

Full Text

Restricted Access

About the authors

E. V. Grokhotova

Ural Federal University

Author for correspondence.
Email: lena.groxotova@mail.ru
Russian Federation, Ekaterinburg

A. Yu. Solovyova

Ural Federal University

Email: lena.groxotova@mail.ru
Russian Federation, Ekaterinburg

E. A. Elfimova

Ural Federal University

Email: lena.groxotova@mail.ru
Russian Federation, Ekaterinburg

References

  1. Socoliuc V., Peddis D., Petrenko V.I. et al. // Magnetochemistry. 2020. V. 6. P. 2.
  2. Borin D.Yu., Zubarev A.Y., Chirikov D.N., Odenbach S. // J. Phys. Cond. Matter. 2014. V. 26. Art. No. 406002.
  3. Lopez-Lopez M.T., Borin D.Yu., Zubarev A.Y. // Phys. Rev. E. 2017. V. 96. Art. No. 022605.
  4. Schaller V., Wahnström G., Sanz-Velasco A. et al. // Phys. Rev. B. 2009. V. 80. Art. No. 092406.
  5. Ahrentorp F., Astalan A., Blomgren J. et al. // J. Magn. Magn. Mater. 2015. V. 380. P. 221.
  6. Krishnan K.M. // IEEE Trans. Magn. 2010. V. 46. P. 2523.
  7. Dutz S., Kettering M., Hilger I. et al. // Nanotechnology. 2011. V. 22. Art. No. 265102.
  8. Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
  9. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  10. Нургазизов Н.И., Бизяев Д.А., Бухараев А.А. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 897; Nurgazizov N.I., Bizyaev D.A., Bukharaev A.A. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 815.
  11. Комина А.В., Ярославцев Р.Н., Герасимова Ю.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1597; Komina A.V., Yaroslavtsev R.N., Stolyar S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1362.
  12. Vargas-Osorio Z., Argibay B., Pineiro Y. et al. // IEEE Trans. Magn. 2016. V. 52. Art. No. 2300604.
  13. Schnorr J., Wagner S., Abramjuk C. et al. // Radiology. 2006. V. 240. P. 90.
  14. Wagner M., Wagner S., Schnorr J. et al. // J. Magn. Reson. Imaging. 2011. V. 34. P. 816.
  15. Kratz H., Taupitz M., Ariza de Schellenberger A. et al. // PLOS One. 2018. V. 13. Art. No. e0190214.
  16. Kurlyandskaya G., Shcherbinin S., Volchkov S. et al. // J. Magn. Magn. Mater. 2018. V. 459. P. 154.
  17. Mohtashamdolatshahi A., Kratz H., Kosch O. et al. // Sci. Reports. 2020. V. 10. Art. No. 17247.
  18. Kim J., Staunton J.R., Tanner K. // Adv. Mater. 2016. V. 28. P. 132.
  19. Tognato R., Bonfrate V., Giancane G., Serra T. // Smart Mater. Struct. 2022. V. 31. Art. No. 074001.
  20. Zhou W., Dong X., He Y. et al. // Smart Mater. Struct. 2022. V. 31. Art. No. 105002.
  21. Levada K., Omelyanchik A., Rodionova V. et al. // Cells. 2019. V. 8. P. 1279.
  22. Campos F., Bonhome-Espinosa A.B., Carmona R. et al. // Mater. Sci. Eng. C. 2021. V. 118. Art. No. 111476
  23. Zubarev A.Y. // Phys. Rev. E. 2019. V. 99. Art. No. 062609.
  24. Coïsson M., Barrera G., Appino C. et al. // J. Magn. Magn. Mater. 2019. V. 473. P. 403.
  25. Kahmann T., Ludwig F. // J. Appl. Phys. 2020. V. 127. Art. No. 233901.
  26. Schaller V., Wahnström G., Sanz-Velasco A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 1400.
  27. Kuznetsov A.A. // Phys. Rev. B. 2018. V. 98. Art. No. 144418.
  28. Ilg P. // Phys. Rev. E. 2019. V. 100. Art. No. 022608.
  29. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford University Press, 1989.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the model MGP. Granules with diameter d are located at the vertices of a tetrahedron with edge A.

Download (60KB)
3. Fig. 2. Dependence of the single-particle probability density W on the angle ωk for a model MGP with edge A = 1 and λe = 1: (a), α = 0; (b), α = 1; (c), α = 0; (d), α = 1; (d), α = 0; (e), α = 1. The symbols denote the results of Monte Carlo simulation. The symbol number corresponds to the granule number in the model MGP.

Download (103KB)
4. Fig. 3. Dependence of the single-particle probability density W on the angle ωk for a model MGP with edge A = 1 and λe = 3: (a), α = 0; (b), α = 1; (c), α = 0; (d), α = 1; (d), α = 0; (e), α = 1. The symbols denote the results of Monte Carlo simulation. The symbol number corresponds to the granule number in the model MGP.

Download (130KB)
5. Fig. 4. Dependence of magnetization M on the Langevin parameter α for a model MGP with edge A = 1: (a) , ; (b) , ; (c) , . The symbols denote the results of Monte Carlo simulations for different values ​​of the parameter λe, as indicated in the legend. The dotted line corresponds to the Langevin magnetization L(α).

Download (49KB)

Copyright (c) 2024 Russian Academy of Sciences