Deformation of magnetic active elastomers in magnetic field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnetoactive (aka magnetorheological) elastomer is a composite material consisting of an elastic matrix and magnetic filling substance. A study has been given to the magnetic field-induced deformation of the material. Influenced by non-homogeneous fields, samples of the elastomer have been noticed to exhibit elongations by hundreds of percent. When magnetized, the material filled with magnetically hard particles may exhibit field-induced deformation occurring in a complicated way. In a magnetic field, it reversibly gains a degree of roughness resulting in improved hydrophobicity. In addition, the composite increases in rigidity by tens of percent. Such magnetoactive elastomer may be considered a prospective material to find application in robotics and field-controlled damping units.

Full Text

Restricted Access

About the authors

G. V. Stepanov

State Research Institute for Chemistry and Technology of Organoelement Compounds

Author for correspondence.
Email: gstepanov@mail.ru
Russian Federation, Moscow

P. A. Storozhenko

State Research Institute for Chemistry and Technology of Organoelement Compounds

Email: gstepanov@mail.ru
Russian Federation, Moscow

References

  1. Shiga T., Okada A., Kurauchi T. // J. Appl. Polym. Sci. 1995. V. 58. P. 787.
  2. EP 0784163. 1996. Variable stiffness bushing using magnetorheological elastomers.
  3. Jolly M.R., Carlson J.D., Munoz B.C. // J. Intell. Mater. Syst. Struct. 1996. No. 7. P. 613.
  4. Jolly M.R., Carlson J.D., Munoz B.C. // Smart Mater. Struct. 1996. V. 5. No. 5. P. 607.
  5. Zrínyi M., Barsi L., Büki A. // J. Chem. Phys. 1996. V. 104. No. 21. P. 8750.
  6. Zrı́nyi M., Barsi L., Szabó D., Kilian H.-G. // J. Chem. Phys. 1997. V. 106. No. 13. P. 5685.
  7. Nikitin L.V., Mironova L.S., Stepanov G.V., Samus A.N. // Polymer Sci. A. 2001. V. 43. No. 4. Р. 443.
  8. Nikitin L.V., Stepanov G.V., Mironova L.S., Gorbunov A.I. // JMMM. 2004. V. 272—276. P. 2072.
  9. Алехина Ю.А., Макарова Л.А., Наджарьян Т.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 882; Alekhina Y.A., Makarova L.A., Nadzharyan T.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 801.
  10. Амиров А.А., Каминский А.С., Архипова Е.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 813; Amirov A.A., Kaminskiy A.S., Arkhipova E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 715.
  11. Кузнецова И.Е., Колесов В.В., Зайцев Б.Д. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 8. С. 1048; Kuznetsova I.E., Kolesov V.V., Zaitsev B.D. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 8. P. 945.
  12. Степанов Г.В., Крамаренко Е.Ю., Перов Н.С. и др. // Вест. Перм. ПНИПУ. Механика. 2013. № 4. С. 106.
  13. Степанов Г.В., Кириченко С.И., Махаева Е.Е., Крамаренко Е.Ю. // ВМС. Сер. А. 2023. Т 65. № 2. С. 104; Stepanov G.V., Kirichenko S.I., Makhaeva E.E. et al. // Polym. Sci. Ser. A. 2023. V. 65. P. 157.
  14. Zimmermann K., Naletova V.A., Zeidis I. et al. // J. Magn. Magn. Mater. 2007. V. 311. No. 1. P. 450.
  15. Stepanov G.V., Chertovich A.V., Kramarenko E.Y. // JMMM. 2012. V. 324. No. 21. P. 3448.
  16. Kramarenko E.Yu., Chertovich A.V., Stepanov G.V. et al. // Smart Mater. Struct. 2015. V. 24. Art. No. 035002.
  17. Borin D.Yu., Stepanov G.V., Odenbach S. // J. Phys. Conf. Ser. 2013. V. 412. Art. No. 012040.
  18. Borin D.Yu., Stepanov G.V. // J. Optoelectr. Adv. Mater. 2013. V. 15. No. 3—4. P. 249.
  19. Borin D., Stepanov G., Musikhin A. // Polymers. 2020. V. 12. No. 10. Art. No.2371.
  20. Sorokin V.V., Sokolov B.O., Stepanov G.V., Kramarenko E.Yu. // JMMM. 2019. V. 459. P. 268.
  21. Stepanov G.V., Abramchuk S.S., Grishin D.A. et al. // Polymer. 2007. V. 48. P. 488.
  22. Stepanov G.V., Borin D.Yu., Raikher Yu.L, Melenev P.V. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 204121.
  23. http://www.magnetolab.ru/video/video7_00.mp4.
  24. Borin D.Yu., Stepanov G.V. // J. Intell. Mater. Syst. Struct. 2015. V. 26. No. 14. P. 1893.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the elongation of the sample in a non-uniform magnetic field on the magnitude of the magnetic field on the surface of the electromagnet: 1 - deformation parallel to the direction of structuring (direction A-A, b), 2 - deformation perpendicular to the direction of structuring (direction B-B, b)

Download (151KB)
3. Fig. 2. Multipolar magnetization of the MAE strip. Diagram of the magnetization of the MAE strip and photographs of the bending of the magnetized MAE in a magnetic field.

Download (147KB)
4. Fig. 3. Changes in surface structure under the influence of a magnetic field. Conditional magnification ×10. The scale of the two images is the same. Initial (a) and in a magnetic field of 100 mT (b). Photograph of a 3D profile of the MAE sample surface without a magnetic field (c) and in a magnetic field of 200 mT (d). Magnification ×500.

Download (1MB)
5. Fig. 4. Surface structure after polymerization of liquid MAE film in a magnetic field.

Download (372KB)
6. Fig. 5. Dependence of voltage on the relative elongation of MAE without a field (1) and in a magnetic field of different strengths (curves 2–20 mT, 7–270 mT).

Download (86KB)

Copyright (c) 2024 Russian Academy of Sciences