Comparison of second harmonic generation efficiency in alumo- and germanosilicate glasses at volumetric optical poling
- 作者: Vostrikova L.I.1, Kartashev l.A.1
-
隶属关系:
- Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences
- 期: 卷 88, 编号 7 (2024)
- 页面: 1050-1057
- 栏目: Luminescence and Laser Physics
- URL: https://rjsvd.com/0367-6765/article/view/676731
- DOI: https://doi.org/10.31857/S0367676524070088
- EDN: https://elibrary.ru/PBPGWR
- ID: 676731
如何引用文章
详细
The second harmonic generation is investigated on microperiodic gratings of nonlinear polarizability photointegrated at volumetric optical poling in alumo- and germanosilicate glasses. The comparison shows the significant impact of nitrogen, phosphorus, and rare-earth element additions. The developed theory of nonlinear-frequency conversion in case of current mechanism allowed to estimate the characteristics and magnitudes of photointegrated nonlinearities in glasses. The sharp dependence of the harmonic generation efficiency on intensity of the component of poling radiation was detected because of the possible influence of photoconductivity, which must be considered when developing perspective samples with photointegrated gratings.
全文:

作者简介
L. Vostrikova
Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: vostrik@isp.nsc.ru
俄罗斯联邦, Novosibirsk
l. Kartashev
Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences
Email: vostrik@isp.nsc.ru
俄罗斯联邦, Novosibirsk
参考
- Antonyuk B.P., Antonyuk V.B., Frolov A.A. // Opt. Commun. 2000. V. 174. No. 5—6. P. 427.
- Балакирев М.К., Вострикова Л.И., Смирнов В.А. // Квант. электрон. 2008. Т. 38. № 8. С. 724; Balakirev M.K., Vostrikova L.I., Smirnov V.A. // Quantum Electron. 2008. V. 38. No. 8. P. 724.
- Баскин Э.М., Энтин М.В. // Письма в ЖЭТФ. 1988. Т. 48. № 10. С. 554; Baskin E.M., Entin M.V. // JETP Lett. 1988. V. 48. No. 10. P. 601.
- Kovalev V.M., Sonowal K., Savenko I.G. // Phys. Rev. B. 2021. V. 103. No. 2. Art. No. 024513.
- Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2018. V. 10717. Art. No. 107170E.
- Hickstein D.D., Carlson D.R., Mundoor H. et al. // Nature Photonics. 2019. V. 13. No. 7. P. 494.
- Balakirev M.K., Kityk I.V., Smirnov V.A. et al. // Phys. Rev. A. 2003. V. 67. No. 2. Art. No. 023806.
- Tsutsumi N., Odane C. // J. Opt. Soc. Amer. B. 2003. V. 20. No. 7. P. 1514.
- Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2022. V. 12193. Art. No. 121930O.
- Liu Y.L., Wang W.J., Gao X.X. et al. // J. Atom. Mol. Sci. 2011. V. 2. No. 4. P. 334.
- Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2018. V. 10717. Art. No. 107170D.
- Nitiss E., Liu T., Grassani D. et al. // ACS Photonics. 2020. V. 7. No. 1. P. 147.
- Вострикова Л.И., Смирнов В.А. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 203; Vostrikova L.I., Smirnov V.A. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 181.
- Porcel M.A.G., Mak J., Taballione C. et al. // Opt. Express. 2017. V. 25. No. 26. P. 33143.
- Reddy A.S.S., Kityk A.V., Jedryka J. et al. // Opt. Mater. 2022. V. 123. Art. No. 111858.
- Вострикова Л.И., Смирнов В.А. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 198; Vostrikova L.I., Smirnov V.A. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 176.
- Балакирев М.К., Вострикова Л.И., Смирнов В.А., Энтин М.В. // Письма в ЖЭТФ. 2004. Т. 80. № 1. С. 32; Balakirev M.K., Vostrikova L.I., Smirnov V.A., Entin M.V. // JETP Lett. 2004. V. 80. No. 1. P. 26.
- Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989. 560 с.
- Мальчукова Е.В., Теруков Е.И. // Изв. РАН. Сер. физ. 2022. Т. 86. № 7. С. 956; Malchukova E.V., Terukov E.I. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 7. P. 797.
- Goutaland F., Jander P., Brocklesby W.S., Dai G. // Opt. Mater. 2003. V. 22. No. 4. P. 383.
补充文件
