Parameters which influence efficiency of geomagnetically induced currents generation by non-storm Pc5-6/Pi3 geomagnetic pulsations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied geomagnetic pulsations with periods of about several minutes and geomagnetically induced currents related to them. The interrelation is studied between efficiency of pulsations in currents’ generation and parameters of interplanetary magnetic field and plasma of the solar wind at different delays. Geomagnetic data and the recordings of geomagnetically induced currents in the Russian North and Finland are used for the analysis. It is shown that efficiency of current generation by pulsations grows if the solar wind velocity is not lower than 500 km/s for several hours.

Full Text

Restricted Access

About the authors

Ya. A. Sakharov

Polar Geophysical Institute; Geophysical Center of the Russian Academy of Sciences

Email: nyagova@ifz.ru
Russian Federation, Apatity; Moscow

N. V. Yagova

Geophysical Center of the Russian Academy of Sciences; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Author for correspondence.
Email: nyagova@ifz.ru
Russian Federation, Moscow; Moscow

V. A. Bilin

Polar Geophysical Institute

Email: nyagova@ifz.ru
Russian Federation, Apatity

V. N. Selivanov

Northern Energetics Research Center, Kola Science Center of the Russian Academy of Sciences

Email: nyagova@ifz.ru
Russian Federation, Apatity

T. V. Aksenovich

Northern Energetics Research Center, Kola Science Center of the Russian Academy of Sciences

Email: nyagova@ifz.ru
Russian Federation, Apatity

V. A. Pilipenko

Geophysical Center of the Russian Academy of Sciences; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: nyagova@ifz.ru
Russian Federation, Moscow; Moscow

References

  1. Boteler D.H., Pirjola R.J., Nevanlinna H. // Adv. Space. Res. 1998. V. 22. P. 17.
  2. Pulkkinen A., Pirjola R., Viljanen A. // Space Weather. 2008. V. 6. Art. No. S07001.
  3. Pulkkinen A., Kataoka R. // Geophys. Res. Lett. 2006. V. 33. Art No. L12108.
  4. Love J.J., Coisson P., Pulkkinen A. // Geophys. Res. Lett. 2016. V. 43. P. 4126.
  5. Viljanen A., Wintoft P., Wik M. // J. Space Weath. Space Climate. 2015. V. 5. Art. No. A24.
  6. Milan S.E., Imber S.M., Fleetham A.L., Gjerloev J. // J. Geophys. Res. Space Phys. 2023. V. 128. Art. No. e2022JA030953.
  7. Гусев Ю.П., Лхамдондог А.Д., Монаков Ю.В. и др. // Электр. станц. 2020. № 2. C. 54; Gusev Y.P., Lkhamdondog A., Monakov Y.V. et al. // Power Technol. Eng. 2020. V. 54. P. 285.
  8. Belakhovsky V., Pilipenko V., Engebretson M. et al. // J. Space Weath. Space Clim. 2019. V. 9. Art. No. 18.
  9. Apatenkov S.V., Pilipenko V.A., Gordeev E.I. et al. // Geophys. Res. Lett. 2020. V. 47. Art. No. e2019GL086677.
  10. Шевелева Д.А., Апатенков С.В., Сахаров Я.А. и др. // Косм. иссл. 2023. Т. 61. С. 39; Sheveleva D.A., Apatenkov S.V., Sakharov Ya.A. et al. // Cosmic Res. 2023. V. 61. P. 34.
  11. Сахаров Я.А., Ягова Н.В., Пилипенко В.А. // Изв. РАН. Сер. физ. 2021. Т. 85. С. 445; Sakharov Y.A., Yagova N.V., Pilipenko V.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 3. P. 329.
  12. Yagova N.V., Pilipenko V.A., Sakharov Y.A. et al. // Earth Planets Space. 2021. V. 73. Art. No. 88.
  13. Sakharov Ya.A., Yagova N.V., Pilipenko V.A., Selivanov V.N. // Russ. J. Earth. Sci. 2022. V. 22. Art. No. ES1002.
  14. Kim K.H., Cattell C.A., Lee D. et al. // J. Geophys. Res. 2002. V. 107. Art. No. 1406.
  15. Engebretson M.J., Glassmeier K.H., Stellmacher M. et al. // J. Geophys. Res. 1998. V. 103. P. 26271.
  16. Alperovich L.S., Fedorov E.N. Hydromagnetic waves in the magnetosphere and the ionosphere. Astrophysics and space science library. V. 353. Springer. 2007.
  17. Kessel R.L., Mann I.R., Fung S.F. et al. // Ann. Geophys. 2004. V. 22. P. 629.
  18. Hietala H., Partamies N., Laitinen T.V. et al. // Ann. Geophys. 2012. V. 30. P. 33.
  19. Yagova N.V., Pilipenko V.A., Baransky L.N., Engebretson M.J. // Ann. Geophys. 2010. V. 28. P. 1761.
  20. Сахаров Я.А., Катькалов Ю.В., Селиванов В.Н., Вильянен А. // Сб. Практические аспекты гелиогеофизики. Матер. спец. секции “Практические аспекты науки космической погоды” 11-й конф. “Физика плазмы в солнечной системе” (Москва, 2016). С. 134.
  21. Баранник М.Б., Данилин А.Н., Катькалов Ю.В. и др. // ПТЭ. 2012. № 1. С. 118; Barannik M.B., Danilin A.N., Kolobov V.V. et al. // Instr. Exper. Techniq. 2012. V. 55. P. 110.
  22. http://gic.en51.ru.
  23. Селиванов В.Н., Аксенович Т.В., Билин В.А. и др. // Солн.-земн. физ. 2023. Т. 9. С. 93; Selivanov V.N., Aksenovich T.V., Bilin V. A. et al. // Sol. — Terr. Phys. 2023. V. 9. P. 93.
  24. Tanskanen E.I. // J. Geophys. Res. 2009. V. 114. Art. No. A05204.
  25. https://space.fmi.fi/image.
  26. https://cdaweb.gsfc.nasa.gov.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the solar wind speed V averaged over the intervals at which the GIT oscillation spread ∆I > 10 A depends on the averaging time τ for two groups of pulsations with different RIB ratios. The solid lines show the results for the entire observation period (2014-2018), while the dashed and dashed lines show the results for two-year subsamples. The horizontal dashed line shows the average V value for the entire observation period

Download (200KB)
3. Fig. 2. Distributions with respect to the RIB ratio for high (upper panels) and low (lower panels) solar wind speeds of suprathreshold GIT recording intervals for two threshold values: ∆I = 2 A (a, b) and ∆I = 10 A (c, d). Threshold values: V = 475 km/s, τ = 8 h

Download (213KB)
4. Fig. 3. Dependence on solar wind speed V and averaging time τ of the fraction of intervals with GIT-effective pulsations P(RIB > Rb) in the total number of intervals for which pulsation-related GITs with ∆I > 10 A were observed

Download (111KB)

Copyright (c) 2024 Russian Academy of Sciences