Piezoelectric hysteresis and relaxation processes in ferroelectric ceramics in weak electric fields

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The processes of piezoelectric relaxation and hysteresis in ferroelectric piezoelectric ceramics based on the lead zirconate-titanate system are studied in the region of weak electric fields. An analysis of the field and time dependences of the complex piezoelectric modulus |d31| obtained by processing sequentially measured piezoresonance spectra of the radial vibration mode of thin piezoceramic disks using the piezoresonance spectrum analysis method and program (PRAP) was carried out. A physical interpretation of the results obtained is proposed.

About the authors

I. A. Shvetsov

Southern Federal University

Email: anrez@sfedu.ru

Institute of Physics

Russian Federation, 344090, Rostov-on-Don

N. A. Shvetsova

Southern Federal University

Email: anrez@sfedu.ru

Institute of Physics

Russian Federation, 344090, Rostov-on-Don

E. I. Petrova

Southern Federal University

Email: anrez@sfedu.ru

Institute of Physics

Russian Federation, 344090, Rostov-on-Don

A. N. Reznichenko

Southern Federal University

Author for correspondence.
Email: anrez@sfedu.ru

Institute of Physics

Russian Federation, 344090, Rostov-on-Don

D. I. Makarev

Southern Federal University

Email: anrez@sfedu.ru

Institute of Physics

Russian Federation, 344090, Rostov-on-Don

A. N. Rybyanets

Southern Federal University

Email: anrez@sfedu.ru

Institute of Physics

Russian Federation, 344090, Rostov-on-Don

References

  1. Damjanovic D. // In: The Science of Hysteresis. UK: Elsevier Inc., 2005. P. 337.
  2. Zhao D., Lenz T., Gelinck G.H. et al. // Nature Commun. 2019. V. 10. No. 1. P. 2547.
  3. Esin A.A., Alikin D.O., Turygin A.P. et al. // J. Appl. Phys. 2017. V. 121. No. 7. Art. No. 074101.
  4. IEEE Standard on piezoelectricity. ANSI/IEEE Std. 176—1987. New York: The Institute of Electrical and Electronics Engineers, 1987. 176 p.
  5. Kwok K.W., Chan Y.L.W., Choy C.L. et al. // IEEE Trans. Ultrason. Ferroelectr. Frequency Control. 1997. V. 44. No. 4. P. 733.
  6. Shvetsova N.A., Shvetsov I.A., Petrova E.I. et al. // Ferroelectrics. 2023. V. 612. No. 1. P. 123.
  7. Damjanovic D. // Rep. Prog. Phys. 1998. V. 61. P. 1267.
  8. Turygin A., Alikin D., Abramov A. et al. // Ferroelectrics. 2017. V. 508. No. 1. P. 77.
  9. Shvetsov I.A., Petrova E.I., Shvetsova N.A. et al. // Ferroelectrics. 2020. V. 561. No. 1. P. 69.
  10. www.tasitechnical.com.
  11. Rybianets A., Kushkuley L., Eshel Y., Nasedkin A. // Proc. 2006 IEEE Ultrason. Symp. (Vancouver, 2006). Acc. No. 9474463. P. 1533.
  12. Швецова Н.А., Швецов И.А., Петрова Е.И. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1362; Shvetsova N.A., Shvetsov I.A., Petrova E.I. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1390.
  13. Швецов И.А., Швецова Н.А., Петрова Е.И. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1355; Shvetsov I.A., Shvetsova N.A., Petrova E.I. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1383.
  14. Shvetsova N.A., Reznitchenko A.N., Shvetsov I.A. et al. // Proc. Int. Conf. “Physics, Mechanics of New Materials and Their Applications”. (Azov, 2015). P. 415.
  15. Shvetsova N.A., Shcherbinin S.A., Shvetsov I.A. et al. // Ferroelectrics. 2021. V. 576. No. 1. P. 100.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences