Electron beam stimulated luminescence of helium ion irradiated hexagonal boron nitride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The impact of the irradiation with focused helium ion beam and electron beam on the cathodoluminescence (CL) of hexagonal boron nitride was investigated. It was shown that the irradiation with helium ions resulted in a decrease of the intensity of CL in the region 200–700 nm. Subsequent irradiation with electrons results in an increase of the intensity of 2 eV CL band comparing with its intensity in pristine material.

About the authors

Yu. V. Petrov

Saint-Petersburg State University, Faculty of Physics

Email: o_gogina@mail.ru
Russia, 199034, Saint-Petersburg

O. F. Vyvenko

Saint-Petersburg State University, Faculty of Physics

Email: o_gogina@mail.ru
Russia, 199034, Saint-Petersburg

O. A. Gogina

Saint-Petersburg State University, Faculty of Physics

Author for correspondence.
Email: o_gogina@mail.ru
Russia, 199034, Saint-Petersburg

T. V. Sharov

Saint-Petersburg State University, Faculty of Physics

Email: o_gogina@mail.ru
Russia, 199034, Saint-Petersburg

S. Kovalchuk

Freie Universität Berlin, Department of Physics

Email: o_gogina@mail.ru
Germany, 14195, Berlin

K. Bolotin

Freie Universität Berlin, Department of Physics

Email: o_gogina@mail.ru
Germany, 14195, Berlin

References

  1. Bourrellier R., Meuret S., Tararan A. et al. // Nano Lett. 2016. V. 16. No. 7. P. 4317.
  2. Castelletto S., Inam F.A., Sato S., Boretti A. // Beilstein J. Nanotechnol. 2020. V. 1. No. 1. P. 740.
  3. Korona T., Chojecki M. // Int. J. Quant. Chem. 2019. V. 119. No. 14. Art. No. e25925.
  4. Weston L., Wickramaratne D., Mackoit M. et al. // Phys. Rev. B. 2018. V. 97. No. 21. Art. No. 214104.
  5. Turiansky M.E., Alkauskas A., Bassett L.C. et al. // Phys. Rev. Lett. 2019. V. 123. No. 12. Art. No. 127401.
  6. Tran T.T., Kerem Bray, Ford M.J. et al. // Nature Nano-technol. 2016. V. 11. No. 1. P. 37.
  7. Grosso G., Moon H., Lienhard B. et al. // Nature Commun. 2017. V. 8. No. 1. P. 1.
  8. Choi S., Tran T.T., Elbadawi C. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. No. 43. P. 29642.
  9. Guo N.J., Liu W., Li Z.P. et al. // ACS Omega. 2022. V. 7. No. 2. P. 1733.
  10. Петров Ю.В., Гогина О.А., Вывенко О.Ф. и др. // ЖТФ. 2022. Т. 92. № 8. С. 1166.
  11. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Meth. Phys. Res. B. 2010. V. 268. No. 11–12. P. 1818.
  12. Drouin D., Couture A.R., Joly D. et al. // J. Scan. Microsc. 2007. V. 29. No. 3. P. 92.
  13. Uddin M.R., Majety S., Li J. et al. // J. Appl. Phys. 2014. V. 115. No. 9. Art. No. 093509.
  14. Pons D., Bourgoin J.C. // J. Physics C. 1985. V. 18. No. 20. P. 3839.
  15. Hoffman D.M., Doll G.L., Eklund P.C. // Phys. Rev. B. 1984. V. 30. No. 10. P. 6051.
  16. Ngwenya T.B., Ukpong A.M., Chetty N. // Phys. Rev. B. 2011. V. 84. No. 24. Art. No. 245425.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (171KB)
3.

Download (3MB)
4.

Download (35KB)
5.

Download (48KB)
6.

Download (901KB)
7.

Download (45KB)
8.

Download (39KB)

Copyright (c) 2023 Ю.В. Петров, О.Ф. Вывенко, О.А. Гогина, Т.В. Шаров, С. Ковальчук, К. Болотин