Low-temperature properties of a silicon-based sub-THz detector

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Characteristics of the silicon-based sub-THz plasmon detector were studied in a wide temperature range, down to the temperature of the liquid nitrogen. Temperature dependences of the detector sensitivity were obtained, and its noise characteristics were studied. The frequency dependence of the sensitivity in the frequency range 70–120 GHz was measured at room temperature, with the maximum of 25 V/W reached at the frequency of 96 GHz. The noise equivalent power of the detector under study was estimated assuming that the main source of noise was of Nyquist nature and varied from a value of 2 · 10–10 W · Hz–1/2 at room temperature down to 2 · 10–11 W · Hz–1/2 at temperature of the liquid nitrogen. Additionally, the volt-ampere characteristics of the sub-THz detector were investigated. It was found that the feature in the differential resistance and sensitivity as a function of the applied DC voltage emerges at the temperature of the liquid nitrogen.

About the authors

A. R. Khisameeva

Institute of Solid State Physics of the Russian Academy of Science

Author for correspondence.
Email: akhisameeva@issp.ac.ru
Russia, 142432, Chernogolovka

A. V. Shchepetilnikov

Institute of Solid State Physics of the Russian Academy of Science

Email: akhisameeva@issp.ac.ru
Russia, 142432, Chernogolovka

Ya. V. Fedotova

Institute of Solid State Physics of the Russian Academy of Science

Email: akhisameeva@issp.ac.ru
Russia, 142432, Chernogolovka

A. A. Dremin

Institute of Solid State Physics of the Russian Academy of Science

Email: akhisameeva@issp.ac.ru
Russia, 142432, Chernogolovka

I. V. Kukushkin

Institute of Solid State Physics of the Russian Academy of Science

Email: akhisameeva@issp.ac.ru
Russia, 142432, Chernogolovka

References

  1. Shuvaev A., Muravev V.M., Gusikhin P.A. et al. // Phys. Rev. Lett. 2021. V. 126. No. 13. Art. No. 136801.
  2. Siegel P.H. // IEEE Trans. Microwave Theory Techn. 2004. V. 52. No. 10. P. 2438.
  3. Siegel P.H. // IEEE Trans. Antennas Propag. 2007. V. 55. No. 11. P. 2957.
  4. Federici J., Moeller L. // J. Appl. Phys. 2010. V. 107. No. 11. P. 6.
  5. Song H.J., Nagatsuma T. // IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. No. 1. P. 256.
  6. Koenig S., Lopez-Diaz D., Antes J. et al. // Nature Photon. 2013. V. 7. No. 12. P. 977.
  7. Chen Z., Ma X., Zhang B. et al. // China Commun. 2019. V. 16. No. 2. P. 1.
  8. Ogawa Y., Kawase K., Yamashita M. et al. // Proc. CLEO. V. 1. (Sun Francisco, 2004). P. 3.
  9. Shen Y.C., Lo A.T., Taday P.F. et al. // Appl. Phys. Lett. 2005. V. 86. No. 24. Art. No. 241116.
  10. Tzydynzhapov G., Gusikhin P., Muravev V. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 632.
  11. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // Appl. Opt. 2021. V. 60. No. 33. Art. No. 10448.
  12. Dyakonov M.I., Shur M.S. //IEEE Trans. Electron Devices. 1996. V. 43. No. 10. P. 1640.
  13. Lü J.Q., Shur M.S. // Appl. Phys. Lett. 2001. V. 78. No. 17. P. 2587.
  14. Fetterman H.R., Clifton B.J., Tannenwald P.E. et al. // Appl. Phys. Lett. 1974. V. 24. No. 2. P. 70.
  15. Karasik B.S., Sergeev A.V., Prober D.E. // IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. No. 1. P. 97.
  16. Whatmore R.W. // Rep. Prog. Phys. 1986. V. 49. No. 12. P. 1335.
  17. Fernandes L.O.T., Kaufmann P., Marcon R. et al. // Proc. XXXth URSI GASS. (Istanbul, 2011). P. 1.
  18. Muravev V.M., Gusikhin P.A., Andreev I.V. et al. // Phys. Rev. Lett. 2015. V. 114. No. 10. Art. No. 106805.
  19. Muravev V.M., Gusikhin P.A., Zarezin A.M. et al. // Phys. Rev. B. 2019. V. 99. No. 24. Art. No. 241406.
  20. Muravev V.M., Kukushkin I.V. // Appl. Phys. Lett. 2012. V. 100. No. 8. Art. No. 082102.
  21. Муравьев В.М., Соловьев В.В., Фортунатов А.А. и др. // Письма в ЖЭТФ. 2016. Т. 103. № 12. С. 891; Muravev V.M., Solov’ev V.V., Fortunatov A.A. et al. // JETP Lett. 2016. V. 103. No. 12. P. 792.
  22. Shchepetilnikov A.V., Kaysin B.D., Gusikhin P.A. et al. // Opt. Quantum Electron. 2019. V. 51. No. 12. P. 1.
  23. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 655.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (305KB)
3.

Download (82KB)
4.

Download (144KB)

Copyright (c) 2023 А.Р. Хисамеева, А.В. Щепетильников, Я.В. Федотова, А.А. Дрёмин, И.В. Кукушкин