Magnetic and dielectric properties double perovskite Sr2MnTiO5.87

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnetic and dielectric properties of Sr2MnTiO5.87 double perovskite have been studied. Magnetic phase transitions were observed at 12 and 43 K in the FC and ZFC curves of magnetization and magnetic heat capacity, the nature of which is being discussed. From the analysis of the lattice contribution to the specific heat, the Debye and Einstein temperatures were determined, which were θD = 217 К, θЕ1 = 275 К, θЕ2 = 615 К, θЕ3 = 2000 К.

About the authors

R. M. Eremina

Zavoisky Physical-Technical Institute, Federal Research Center
“Kazan Scientific Center of the Russian Academy of Sciences”

Author for correspondence.
Email: REremina@yandex.ru
Russia, 420029, Kazan

T. I. Chupakhina

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: REremina@yandex.ru
Russia, 620990, Ekaterinburg

R. G. Batulin

Kazan (Volga Region) Federal University

Email: REremina@yandex.ru
Russia, 420008, Kazan

D. V. Popov

Zavoisky Physical-Technical Institute, Federal Research Center
“Kazan Scientific Center of the Russian Academy of Sciences”

Email: REremina@yandex.ru
Russia, 420029, Kazan

Yu. A. Deeva

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: REremina@yandex.ru
Russia, 620990, Ekaterinburg

A. A. Mirzorakhimov

Ural Federal University

Email: REremina@yandex.ru
Russia, 620002, Ekaterinburg

References

  1. Sarma D., Sampathkumaran E., Ray S. et al. // Solid State Commun. 2000. V. 114. P. 465.
  2. Kumar S., Giovannetti G., van den Brink J., Picozzi S. // Phys. Rev. B. 2010. V. 82. Art. No. 134429.
  3. Vasala S., Karppinen M. // Progr. Solid State Chem. 2015. V. 43. No. 1–2. P. 1.
  4. Demazeau G., Siberchicot B., Matar S. et al. // J. Appl. Phys. 1994. V. 75. P. 4617.
  5. Meetei O.N., Erten O., Mukherjee A. et al. // Phys. Rev. B. 2013. V. 87. Art. No. 165104.
  6. Alvarez–Serrano I., Angeles Arillo M., Garcıa-Hernandez M. et al. // J. Amer. Ceram. Soc. 2010. V. 93. P. 2311.
  7. Popov D.V., Gavrilova T.P., Gilmutdinov I.F. et al. // J. Phys. Chem. Solids. 2021. V. 148. Art. No. 109695.
  8. Valant M., Kolodiazhnyi T., Arcon I. et al. // Adv. Funct. Mater. 2012. V. 22. No. 10. P. 2114.
  9. Tackett R., Lawes G., Melot B.C. et al. // Phys. Rev. B. 2007. V. 76. Art. No. 024409.
  10. Mustonen O., Vasala S., Sadrollahi E. et al. // Nature Commun. 2018. V. 9. Art. No. 1085.
  11. Clark L., Orain J.C., Bert F. et al. // Phys. Rev. Lett. 2013. V. 110. Art. No. 207208.
  12. Mydosh J.A. // Rep. Progr. Phys. 2015. V. 78. Art. No. 052501.
  13. Murugesan G., Nithya R., Kalainathan S. // J. Cryst. Growth. 2020. V. 530. Art. No. 125179.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (72KB)
3.

Download (421KB)
4.

Download (109KB)
5.

Download (137KB)

Copyright (c) 2023 Р.М. Еремина, Т.И. Чупахина, Р.Г. Батулин, Д.В. Попов, Ю.А. Деева, А.А. Мирзорахимов