Stability of a skyrmion crystal in a frustrated antiferromagnetic bilayer on a triangular lattice
- Authors: Sharafullin I.F.1, Nugumanov A.G.1, Baisheva A.H.1, Yuldasheva A.R.1, Diep H.T.2
-
Affiliations:
- Bashkir State University
- Laboratoire de Physique Theorique et Modelisation, Université Cergy-Paris, CNRS
- Issue: Vol 87, No 4 (2023)
- Pages: 511-516
- Section: Articles
- URL: https://rjsvd.com/0367-6765/article/view/654426
- DOI: https://doi.org/10.31857/S0367676522700909
- EDN: https://elibrary.ru/NOIGHX
- ID: 654426
Cite item
Abstract
We studied the processes of formation and conditions of stability of skyrmion lattices during thermodynamic fluctuations in magnetoelectric films, namely, in a frustrated antiferromagnetic/ferroelectric bilayer on a triangular lattice. We calculate the ground state configurations with given parameters using the steepest descent method. We consider the thermodynamic fluctuations in influence of an external magnetic field on the ground state configurations and phase transitions occurring in the model using Monte Carlo simulation.
About the authors
I. F. Sharafullin
Bashkir State University
Author for correspondence.
Email: SharafullinIF@yandex.ru
Russia, 450076, Ufa
A. G. Nugumanov
Bashkir State University
Email: SharafullinIF@yandex.ru
Russia, 450076, Ufa
A. H. Baisheva
Bashkir State University
Email: SharafullinIF@yandex.ru
Russia, 450076, Ufa
A. R. Yuldasheva
Bashkir State University
Email: SharafullinIF@yandex.ru
Russia, 450076, Ufa
H. T. Diep
Laboratoire de Physique Theorique et Modelisation, Université Cergy-Paris, CNRS
Email: SharafullinIF@yandex.ru
France, UMR 8089, 95302, Cergy-Pontoise
References
- Samardak A.S., Kolesnikov A.G., Davydenko A.V. et al. // Phys. Met. Metallogr. 2022. V. 123. P. 238.
- Fert A., Reyren N., Cros V. // Nature Rev. Mater. 2017. V. 2. No. 7. Art. No. 17031.
- Göbel B., Mertig I., Tretiakov O.A. // Phys. Reports. 2021. V. 895. P. 1.
- Marchenko A.I. Krivoruchko V.N. // J. Magn. Magn. Mater. 2015. V. 377. P. 153.
- Sapozhnikov M.V. // J. Magn. Magn. Mater. 2015. V. 396. P. 338.
- Nagaosa N. Tokura Y. // Nature Nanotechnol. 2013. V. 8. No. 12. P. 899.
- Manchon A., Železný J., Miron J. et al. // Rev. Mod. Phys. 2019. V. 91. No. 3. Art. No. 035004.
- Sharafullin I.F., Kharrasov M.K., Diep H.T. // Phys. Rev. B. 2019. V. 99. No. 21. Art. No. 214420.
- Ding J., Yang X., Zhu T. // J. Phys. D. 2015. V. 48. No. 11. Art. No. 115004.
- Fang W., Raeliarijaona A., Chang P.H. et al. // Phys. Rev. Mater. 2021. V. 5. No. 5. Art. No. 054401.
- Heide M., Bihlmayer G., Blügel S. // Phys. Rev. B. 2008. V. 78. No. 14. Art. No. 140403(R).
- Zhang X., Zhou Y., Ezawa M. // Nature Commun. 2016. V. 7. No. 1. P. 1.
- Zhang X., Ezawa M., Zhou Y. // Phys. Rev. B. 2016. V. 94. No. 6. Art. No. 064406.
- Шарафуллин И.Ф., Дьеп Х.Т. // Письма в ЖЭТФ. 2021. Т. 114. № 9. С. 610; Sharafullin I.F., Diep H.T. // JETP Lett. 2021. V. 114. No. 9. P. 536.
- Nugumanov A.G., Sharafullin I.F. // Lett. Mater. 2022. V. 12. No. 2. P. 116.
Supplementary files
