Thermal stability of ferroelectric films based on hafnium-zirconium dioxide on silicon

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results are presented indicating an increase in thermal stability, as well as structural and electrophysical properties of obtained by plasma-stimulated atomic layer deposition (PEALD) 20 nm ferroelectric HfO2, Hf0.5Zr0.5O2 films with the inserts of Al2O3 monolayers and without them, in metal-ferroelectric-silicon mesa structures, promising for universal memory devices.

About the authors

V. P. Popov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Author for correspondence.
Email: popov@isp.nsc.ru
Russia, 117218, Moscow

V. A. Antonov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: popov@isp.nsc.ru
Russia, 117218, Moscow

F. V. Tikhonenko

Федеральное государственное бюджетное учреждение науки
“Институт физики полупроводников имени А.В. Ржанова Сибирского отделения Российской академии наук”

Email: popov@isp.nsc.ru
Россия, Новосибирск

A. V. Myakonkikh

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: popov@isp.nsc.ru
Russia, 117218, Moscow

K. V. Rudenko

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: popov@isp.nsc.ru
Russia, 117218, Moscow

References

  1. Khosla R., Sharma S. // ACS Appl. Electron. Mater. 2021. V. 3. No. 7. P. 286.
  2. Wang D., Zhang Y., Wang J. et al. // J. Mater. Sci. Technol. 2022. V. 104. P. 1.
  3. Shen Y., Zhang Z., Zhang Q. et al. // RSC Advances. 2020. V. 10. P. 7812.
  4. Böscke T.S., Müller J., Bräuhaus D. et al. // Appl. Phys. Lett. 2011. V. 99. Art. No. 102903.
  5. Müller J., Yurchuk E., Schlösser T. et al. // Proc. 2012 Symp. VLSI Technology. (Honolulu, 2012). P. 25.
  6. Müller J., Böscke T.S., Schroder U. et al. // Nano Lett. 2012. V. 12. No. 8. P. 4318.
  7. Materano M., Lomenzo P.D., Kersch A. et al. // Inorg. Chem. Front. 2021. V. 8. P. 2650.
  8. Chen H., Zhou X., Tang L. et al. // Appl. Phys. Rev. 2022. V. 9. Art. No. 011307.
  9. Kim H.J., Park M.H., Kim Y.J. et al. // Appl. Phys. Lett. 2014. V. 105. Art. No. 192903.
  10. Migita S., Ota H., Shibuya K. et al. // Japan. J. Appl. Phys. 2019. V. 58. Art. No. SBBA07.
  11. Chesnokov Yu., Miakonkikh A., Rogozhin A. et al. // J. Mater. Sci. 2018. V. 53. P. 1.
  12. Grigoriev A., Azad M.M., McCampbell J. // Rev. Sci. Instrum. 2011. V. 82. No. 12. Art. No. 124704.
  13. Popov V., Antonov V., Tikhonenko F. et al. // J. Physics D. 2021. V. 54. No. 22. Art. No. 2251012021.
  14. Popov V.P., Tikhonenko F.V., Antonov V.A. et al. // Sol. State. Electron. 2022. V. 194. Art. No. 108348.
  15. Долженко Д.И., Бородзюля В.Ф., Захарова И.Б., Сударь Н.Т. // ЖТФ. 2021. Т. 91. № 1. С. 58; Dolzhenko D.I., Borodzyulya V.F., Zakharova I.B., Sudar’ N.T. // Tech. Phys. 2021. V. 66. No. 1. P. 53.
  16. White M.H., Adams D.A., Bu J. // IEEE Circuits Devices Mag. 2000. V. 16. P. 22.
  17. Zhang Y., Shao Y.Y., Lu X.B. et al. // Appl. Phys. Lett. 2014. V. 105. Art. No. 172902.
  18. Mikheev V., Chouprik A., Lebedinskii Y. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. No. 35. P. 32108.
  19. Fontanini R., Barbot J., Segatto M. // IEEE J. Electron Dev. Soc. 2022. V. 10. P. 593.
  20. Kim H.J., Park M.H., Kim Y.J. et al. // Appl. Phys. Lett. 2014. V. 105. Art. No. 192903.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (55KB)
3.

Download (48KB)
4.

Download (148KB)
5.

Download (260KB)

Copyright (c) 2023 В.П. Попов, В.А. Антонов, Ф.В. Тихоненко, А.В. Мяконьких, К.В. Руденко