Estimates of annual carbon dioxide fluxes from soil in spruce forests of the «Ural-Carbon» carbon measurement supersite based on incomplete time series with classical regression approaches and machine learning
- Authors: Smorkalov I.A.1,2
-
Affiliations:
- Ural Federal University
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
- Issue: No 3 (2025)
- Pages: 212-223
- Section: Articles
- URL: https://rjsvd.com/0367-0597/article/view/687347
- DOI: https://doi.org/10.31857/S0367059725030059
- EDN: https://elibrary.ru/tcdwho
- ID: 687347
Cite item
Abstract
Annual carbon dioxide flux from soils of different biomes plays a key role in creating global climate models and in analyzing carbon cycles in terrestrial ecosystems. However, there are significant gaps in such studies at a regional scale. Due to the high complexity of obtaining daily soil respiration values, various modeling methods are used. In this work, based on 2760 soil respiration measurements in spruce forests of the «Ural-Carbon» carbon measurement supersite (Middle Urals) carried out in autumn 2021 and from April to October 2022, annual soil respiration values were estimated using classical regression approaches and machine learning. We also investigated the dependence of the results on the complexity of the model (number of predictors) and the methods used (extrapolation by the random forest model and combined approaches to estimate winter CO₂ fluxes). The «simplified» model with 7 predictors showed only a slight decrease in accuracy compared to the full model with 21 predictors (R² = 0.89, MSE = 0.31 vs. R² = 0.92, MSE = 0.22). Predictors based on remote sensing turned out to be more significant for the accuracy of the model than data measured in the field. Although the initial results of different approaches varied, adding winter respiration values taken from the literature to the random forest model and averaging the values of the combined approaches allowed us to achieve similar values of annual soil respiration: 830.3 ± 6.4 and 851.6 ± 8.0 g C/m²year, respectively.
Full Text

About the authors
I. A. Smorkalov
Ural Federal University; Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: ivan.a.smorkalov@gmail.com
Russian Federation, 620002 Yekaterinburg; 620144 Yekaterinburg
References
- Yang M., Yu G.R., He N.P. et al. A Method for Estimating Annual Cumulative Soil/Ecosystem Respiration and CH4 Flux from Sporadic Data Collected Using the Chamber Method // Atmosphere. 2019. V. 10. № 10. Art. 623. https://doi.org/10.3390/atmos10100623
- Курганова И.Н., Лопес де Гереню В.О., Мякшина Т.Н. и др. Эмиссия CO₂ из почв различных экосистем южно-таежной зоны: анализ данных непрерывных 12-летних круглогодичных наблюдений // Доклады РАН. 2011. Т. 436. № 6. С. 843–846.
- Mukhortova L., Schepaschenko D., Moltchanova E. et al. Respiration of Russian soils: Climatic drivers and response to climate change // Science of the Total Environment. 2021. V. 785. Art. 147314. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147314
- Кудеяров B.Н., Курганова И.Н. Дыхание почв России: анализ базы данных, многолетний мониторинг, общие оценки // Почвоведение. 2005. № 9. С. 1112–1121.
- Карбоновые полигоны (официальный сайт) / URL: https://carbon-polygons.ru/
- Гафуров Ф.Г. Почвы Свердловской области. Екатеринбург: Изд-во Урал. ун-та, 2008. 417 с.
- Усольцев В.А., Воробейчик Е.Л., Бергман И.Е. Биологическая продуктивность лесов Урала в условиях техногенного загрязнения: исследование системы связей и закономерностей. Екатеринбург: Изд-во УГЛТУ, 2012. 365 с.
- Фомин В.В., Рогачев В.Е., Агапитов Е.М. и др. Депонирование углерода основными лесообразующими древесными породами карбонового полигона Свердловской области // Леса России и хозяйство в них. 2024. № 4(91). С. 4–16. https://doi.org/10.51318/FRET.2024.91.4.001
- Сморкалов И.А., Воробейчик Е.Л. Влияние отдельных деревьев на дыхание почвы лесных экосистем в условиях промышленного загрязнения // Почвоведение. 2023. № 9. С. 1116–1127.
- Luo Y., Zhou X. Soil respiration and the environment. Burlington: Acad. Press, 2006. 316 p.
- Карелин Д.В., Почикалов А.В., Замолодчиков Д.Г., Гитарский М.Л. Факторы пространственно-временной изменчивости потоков CO₂ из почв южно-таежного ельника на Валдае // Лесоведение. 2014. № 4. С. 56–66.
- Лупян Е.А., Савин И.Ю., Барталев С.А. и др. Спутниковый сервис мониторинга состояния растительности («Вега») // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т. 8. № 1. С. 190–198.
- Vicente-Serrano S.M., Beguería S., López-Moreno J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index // Journal of Climate. 2010. V. 23. № 7. P. 1696–1718. https://doi.org/10.1175/2009jcli2909.1
- Beguería S., Vicente-Serrano S.M., Reig F., Latorre B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring // International Journal of Climatology. 2014. V. 34. № 10. P. 3001–3023. https://doi.org/10.1002/joc.3887
- Kursa M.B., Rudnicki W.R. Feature selection with the Boruta package // Journal of Statistical Software. 2010. V. 36. № 11. P. 1– 3. https://doi.org/10.18637/jss.v036.i11
- randomForest: Breiman and Cutler’s Random Forests for classification and regression version 4.6-14 / URL: https://cran.r-project.org/package=randomForest
- caret: Classification and Regression Training version 6.0-86 / URL: https://cran.r-project.org/package=caret
- Jian J., Vargas R., Anderson-Teixeira K.J. et al. A global database of soil respiration data. Version 5.0. 2021. https://doi.org/10.3334/ORNLDAAC/1827
- Mavrovic A., Sonnentag O., Lemmetyinen J. et al. Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments // Biogeosciences. 2023. V. 20. № 24. P. 5087–5108. https://doi.org/10.5194/bg-20-5087-2023
- Smorkalov I.A. Soil respiration of spruce-fir forests at the carbon supersite “Ural-Carbon”, Russia, Sverdlovsk region on 2021–2022. 2023. https://doi.org/10.17632/8ns8zprx9c.1
- Осипов А.Ф. Влияние межгодовых различий метеорологических характеристик вегетационного периода на эмиссию CO₂ с поверхности почвы среднетаежного сосняка бруснично-лишайникового (Республика Коми) // Почвоведение. 2018. Т. 12. С. 1455–1463. https://doi.org/10.1134/S0032180X18120080
- Кадулин М.С., Копцик Г.Н. Эмиссия CO₂ почвами в зоне влияния горно-металлургического комбината “Североникель” в Кольской Субарктике // Почвоведение. 2013. № 11. С. 1387–1396. https://doi.org/https://doi.org/10.7868/S0032180X13110063
- Kozlov M.V., Zvereva E.L., Zverev V.E. Impacts of point polluters on terrestrial biota: Comparative analysis of 18 contaminated areas. Dordrecht: Springer, 2009. 466 p.
- Takakai F., Desyatkin A.R., Lopez C.M.L. et al. Influence of forest disturbance on CO₂, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia // Soil Science and Plant Nutrition. 2008. V. 54. № 6. P. 938–949. https://doi.org/https://doi.org/10.1111/j.1747-0765.2008.00309.x
- Сморкалов И.А. Изменчивость дыхания почвы: оценка вклада пространства и времени с помощью алгоритма random forest // Экология. 2022. № 4. С. 299–311. https://doi.org/https://doi.org/10.31857/S0367059722040059
- Kurganova I., De Gerenyu V.L., Rozanova L. et al. Annual and seasonal CO₂ fluxes from Russian southern taiga soils // Tellus B: Chemical and Physical Meteorology. 2003. V. 55. № 2. P. 338–344. https://doi.org/10.3402/tellusb.v55i2.16724
- Shibistova O., Lloyd J., Zrazhevskaya G. et al. Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia // Tellus, Series B: Chemical and Physical Meteorology. 2002. V. 54. № 5. P. 568–589.
- Yan J., Feng Y., Li J. et al. Response of soil respiration and Q₁₀ to temperature and moisture in naturally regenerated and bare lands based on an 11-year observation period // CATENA. 2022. V. 208. Art. 105711. https://doi.org/https://doi.org/10.1016/j.catena.2021.105711
- Berryman E.M., Vanderhoof M.K., Bradford J.B. et al. Estimating soil respiration in a subalpine landscape using point, terrain, climate, and greenness data // J. Geophys. Res.-Biogeosci. 2018. V. 123. № 10. P. 3231–3249. https://doi.org/10.1029/2018jg004613
- Shiri N., Shiri J., Kazemi M.H., Xu T.R. Estimation of CO₂ flux components over northern hemisphere forest ecosystems by using random forest method through temporal and spatial data scanning procedures // Environmental Science and Pollution Research. 2021. P. Published online. https://doi.org/10.1007/s11356-021-16501-x
- Hengl T., Nussbaum M., Wright M.N. et al. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables // PeerJ. 2018. V. 6. Art. e5518. https://doi.org/10.7717/peerj.5518
- Kurganova I., Lopes de Gerenyu V., Khoroshaev D. et al. Temperature sensitivity of soil respiration in two temperate forest ecosystems: the synthesis of a 24-year continuous observation // Forests. 2022. V. 13. № 9. Art. 1374.
- Reinmann A.B., Templer P.H. Increased soil respiration in response to experimentally reduced snow cover and increased soil freezing in a temperate deciduous forest // Biogeochemistry. 2018. V. 140. № 3. P. 359–371. https://doi.org/10.1007/s10533-018-0497-z
- Monson R.K., Lipson D.L., Burns S.P. et al. Winter forest soil respiration controlled by climate and microbial community composition // Nature. 2006. V. 439. № 7077. P. 711–714. https://doi.org/10.1038/nature04555
Supplementary files
