Numerical simulation of volumetric ultrasound heating of biological tissue with surface cooling
- 作者: Pestova P.A.1, Rybyanets A.N.2, Sapozhnikov O.A.1, Karzova M.M.1, Yuldashev P.V.1, Tsysar S.A.1, Kotelnikova L.M.1, Shvetsov I.A.2, Khokhlova V.A.1
-
隶属关系:
- Moscow State University
- Research Institute of Physics
- 期: 卷 71, 编号 2 (2025)
- 页面: 206-217
- 栏目: НЕЛИНЕЙНАЯ АКУСТИКА
- URL: https://rjsvd.com/0320-7919/article/view/689659
- DOI: https://doi.org/10.31857/S0320791925020055
- EDN: https://elibrary.ru/IIODPQ
- ID: 689659
如何引用文章
详细
One of the undesirable effects of using ultrasound for extracorporeal therapy is skin overheating, caused by both ultrasound absorption and contact with the heated surface of the acoustic transducer. To suppress this effect, a forcibly cooled contact medium can be placed between the skin and the irradiating surface. A novel ultrasonic applicator implementing this approach has recently been proposed and developed at SFU. It uses a rectangular piezoelectric transducer bonded to an aluminum plate for volumetric heating of subcutaneous biotissue. The plate is cooled by circulating cold water through laterally drilled channels. This paper presents a numerical algorithm for calculating the three-dimensional temperature field in the tissue during the operation of this applicator. The simulation was based on the inhomogeneous heat equation. Experimental acoustic holography data obtained for the developed transducer were used to calculate the heat sources in the tissue. An example of heating bovine liver tissue ex vivo is considered, with irradiation times ranging from several seconds to several minutes. The simulation results were compared with experimental data on tissue thermal ablation at an acoustic power of 12 W and an ultrasound frequency of 6.96 MHz. It is shown that the combination of thermal tissue exposure and contact boundary cooling allows for volumetric tissue heating with a temperature maximum at a depth of 8 to 15 mm, while maintaining a negligible temperature change at depths up to 2–3 mm.
全文:

作者简介
P. Pestova
Moscow State University
编辑信件的主要联系方式.
Email: pestova.pa16@physics.msu.ru
физический факультет
俄罗斯联邦, Moscow, 119991A. Rybyanets
Research Institute of Physics
Email: pestova.pa16@physics.msu.ru
俄罗斯联邦, Rostov on Don, 344090
O. Sapozhnikov
Moscow State University
Email: pestova.pa16@physics.msu.ru
физический факультет
俄罗斯联邦, Moscow, 119991M. Karzova
Moscow State University
Email: pestova.pa16@physics.msu.ru
физический факультет
俄罗斯联邦, Moscow, 119991P. Yuldashev
Moscow State University
Email: pestova.pa16@physics.msu.ru
физический факультет
俄罗斯联邦, Moscow, 119991S. Tsysar
Moscow State University
Email: pestova.pa16@physics.msu.ru
физический факультет
俄罗斯联邦, Moscow, 119991L. Kotelnikova
Moscow State University
Email: pestova.pa16@physics.msu.ru
физический факультет
俄罗斯联邦, Moscow, 119991I. Shvetsov
Research Institute of Physics
Email: pestova.pa16@physics.msu.ru
俄罗斯联邦, Rostov on Don, 344090
V. Khokhlova
Moscow State University
Email: pestova.pa16@physics.msu.ru
俄罗斯联邦, Moscow, 119991
参考
- Еняков А.М. Метрологические проблемы применения ультразвука в физиотерапии // АСМ. 2015. Т. 3. № 4. С. 152–193.
- Mougenot C., Köhler M.O., Enholm J., Quesson B., Moonen C. Quantification of near-field heating during volumetric MR-HIFU ablation // Med. Phys. 2011. V. 38. P. 272–282.
- Crouzet S., Chapelon J.Y., Rouviere O., Mege-Lechevallier F., Colombel M., Tonoli-Catez H., Martin X., Gelet A. Whole-gland ablation of localized prostate cancer with high-intensity focused ultrasound oncologic outcomes and morbidity in 1002 patients // Eur. Urol. 2014. V. 65. P. 907–914.
- Laubach H.J., Makin I.R., Barthe P.G., Slayton M.H., Manstein D. Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin // Dermatol. Surg. 2008. V. 34. № 5. P. 727–734.
- Бэйли М.Р., Хохлова В.А., Сапожников О.А., Каргл С.Г., Крам Л.А. Физические механизмы воздействия терапевтического ультразвука на биологическую ткань // Акуст. журн. 2003. Т. 49. № 4. С. 437–464.
- Haar G. Therapeutic applications of ultrasound // Prog. Biophys. Mol. Biol. 2007. V. 93. P. 111–129.
- Ko E.J., Hong J.Y., Kwon T.R., Choi E.J., Jang Y.J., Choi S.Y., Yoo K.H., Kim S.Y., Kim B.J. Efficacy and safety of non-invasive body tightening with high-intensity focused ultrasound (HIFU) // Skin Res. Technol. 2017. V. 23. № 4. P. 558–562.
- Al-Jumaily A.M., Liaquat H., Paul S. Focused ultrasound for dermal applications // Ultrasound Med. Biol. 2024. V. 50. № 1. P. 8–17.
- Day D. Microfocused ultrasound for facial rejuvenation: current perspectives // Res. rep. focus. ultrasound. 2014. V. 2. P. 13–17.
- Gutowski K.A. Microfocused ultrasound for skin tightening // Clin. Plast. Surg. 2016. V. 43. № 3. P. 577–582.
- Oni G., Hoxworth R., Teotia S., Brown S., Kenkel J.M. Evaluation of a microfocused ultrasound system for improving skin laxity and tightening in the lower face // Aesthet. Surg. J. 2014. V. 34. № 7. P. 1099–1110.
- White W.M., Makin I.R., Barthe P.G., Slayton M.H., Gliklich R.E. Selective creation of thermal injury zones in the superficial musculoaponeurotic system using intense ultrasound therapy: a new target for noninvasive facial rejuvenation // Arch. Facial Plast. Surg. 2007. V. 9. № 1. P. 22–29.
- MacGregor J.L., Tanzi E.L. Microfocused ultrasound for skin tightening // Semin Cutan Med. Surg. 2013. V. 32. № 1. P. 18–25.
- Checcucci E. et al. The real-time intraoperative guidance of the new HIFU Focal-One platform allows to minimize the perioperative adverse events in salvage setting // J. Ultrasound. 2022. V. 25. № 2. P. 225–232.
- Lee H.J., Lee M.H., Lee S.G., Yeo U.C., Chang S.E.. Evaluation of a novel device, high-intensity focused ultrasound with a contact cooling for subcutaneous fat reduction // Lasers Surg. Med. 2016. V. 48. № 9. P. 878–886.
- Brown S.A., Greenbaum L., Shtukmaster S., Zadok Y., Ben-Ezra S., Kushkuley L. Characterization of nonthermal focused ultrasound for noninvasive selective fat cell disruption (lysis): technical and preclinical assessment // Plast. Reconstr. Surg. 2009. V. 124. № 1. P. 92–101.
- Hongcharu W., Boonchoo K., Gold M.H. The efficacy and safety of the high-intensity parallel beam ultrasound device at the depth of 1.5 mm for skin tightening // J. Cosmet. Dermatol. 2023. V. 22. № 5. P. 1488–1494.
- Рыбянец А.Н., Швецов И.А., Швецова Н.А., Цысарь С.А., Котельникова Л.М., Хохлова В.А., Сапожников О.А. Cочетание объемного ультразвукового нагрева с поверхностным охлаждением как новый метод пространственной и временной локализации теплового воздействия на биоткани // Сборник Трудов XXXVI сессии Российского акустического общества. М.: ГЕОС, 2024. С. 1180–1186.
- Rybyanets A.N., Shvetsov I.A., Shvetsova N.A., Marakhovsky M.A., Kolpacheva N.A. Microstructure, complex electromechanical parameters and dispersion characteristics of ferroelectrically “hard” piezoceramics // J. Adv. Dielectrics. 2025. V. 15. № 3. P. 2540001.
- Sapozhnikov O.A., Tsysar S.A., Khokhlova V.A., Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields // J. Acoust. Soc. Am. 2015. V. 138. № 3. P. 1515–1532.
- Nikolaev D.A., Tsysar S.A., Khokhlova V.A., Kreider W., Sapozhnikov O.A. Holographic extraction of plane waves from an ultrasound beam for acoustic characterization of an absorbing layer of finite dimensions // J. Acoust. Soc. Am. 2021. V. 149. № 1. P. 386.
- Wong G.S., Zhu S. Speed of sound in seawater as a function of salinity, temperature, and pressure // J. Acoust. Soc. Am. 1995. V. 97. № 3. P. 1732–1736.
- Keravnou C.P., Izamis M.-L., Averkiou M.A. Method for estimating the acoustic pressure in tissues using low-amplitude measurements in water // Ultrasound Med. Biol. 2015. V. 41. № 11. P. 3001–3012.
- Андрияхина Ю.С., Карзова М.М., Юлдашев П.В., Хохлова В.А. Ускорение тепловой абляции объемов биологической ткани с использованием фокусированных ультразвуковых пучков с ударными фронтами // Акуст. журн. 2019. Т. 65. № 2. С. 1—12.
- Duck F.A. Physical properties of tissue. London: Academic Press, 1990.
- https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties/
- Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 736 с.
- Пестова П.А., Карзова М. М., Юлдашев П. В., Крайдер У., Хохлова В.А. Влияние траектории перемещения фокуса на равномерность температурного поля при импульсном воздействии мощного ультразвукового пучка на биологическую ткань // Акуст. журн. 2021. Т. 57. № 3. С. 250–259.
- Sapareto S.A., Dewey W.C. Thermal dose determination in cancer therapy // Int. J. Radiat. Oncol. Biol. Phys. 1984. V. 10. № 6. P. 787–800.
- Хилл К.Р., Бэмбер Дж. Ультразвук в медицине. Физические основы применения. Под ред. тер Хаар Г. Пер. с англ. М.: Физматлит, 2008.
- Fan X., Hynynen K. Ultrasound surgery using multiple sonications — treatment time considerations // Ultrasound Med. Biol. 1996. V. 22. № 4. P. 471–482.
- Venkatesan A.M., Partanen A., Pulanic T.K., Dreher M.R., Fischer J., Zurawin R.K., Muthupillai R., Sokka S., Nieminen H.J., Sinaii N., Merino M., Wood B.J., Stratton P. Magnetic resonance imaging-guided volumetric ablation of symptomatic leiomyomata: correlation of imaging with histology // J. Vasc. Interv. Radiol. 2012. V. 23. № 6. P. 786–794.
- Крамаренко Н.В. Обзор способов вывода критериев подобия в механике // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. Науки. 2021. T. 25. №1. С. 163–192.
补充文件
