Statistical characteristics of the internal structure of the seismic background over a hydrocarbon deposit
- 作者: Chebotareva I.Y.1
-
隶属关系:
- Oil and Gas Research Institute, Russian Academy of Sciences
- 期: 卷 71, 编号 2 (2025)
- 页面: 284-298
- 栏目: ACOUSTICS OF STRUCTURALLY INHOMOGENEOUS SOLID MEDIA. GEOLOGICAL ACOUSTICS
- URL: https://rjsvd.com/0320-7919/article/view/689802
- DOI: https://doi.org/10.31857/S0320791925020116
- EDN: https://elibrary.ru/IJIPGQ
- ID: 689802
如何引用文章
详细
The fine structure of seismic background in the territory of an oil field was studied using polyspectral analysis and surrogate models. Statistical test for Gaussianity and linearity showed that natural seismic background in the frequency range of 1–50 Hz is a nonlinear process. Bicoherence graphs revealed statistically significant peaks of phase-related triplets with a characteristic geometry of peak clustering in the main triangular region. To analyze the quasi-noise component of the seismic background, surrogate time series with a randomized phase spectrum were generated, the bispectra of which are free of triplet peaks. Bispectral analysis of surrogate series showed the presence of a non-Gaussian quasi-noise component in the seismic background in the frequency range of 1–6 Hz. Previously, the results of the analysis of the used set of records by two completely different methods, each of which extracts information from different components of the seismic background — quasi-noise and regular, were published. These studies showed that each of the two components contains information sufficient to estimate the total thickness of the productive intervals under the recording point. Based on the results of the bispectral analysis and the features of the algorithms of the two methods, a conclusion was made that the quadratically phase-related triplets and the non-Gaussian quasi-noise component in the field territory are manifestations of endogenous seismic emission and are generated by the same nonlinear process developing in the vicinity of an oil-saturated reservoir. The mechanism of seismic emission should be sought in the class of phenomena with quadratic nonlinearity. The statistical characteristics of the internal structure of the seismic background near oil wells have similar features that differ greatly from the statistical characteristics of the seismic record near a “dry” well located outside the reservoir and not producing oil. Previously unknown prognostic features of the oil/water saturation type of rocks have been identified.
全文:

作者简介
I. Chebotareva
Oil and Gas Research Institute, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: irinache@inbox.ru
俄罗斯联邦, Moscow, 119333
参考
- Арутюнов С.Л., Давыдов В.Ф., Кузнецов О.Л., Графов Б.М., Сиротинский Ю.В. Диплом на открытие 109. Явление генерации инфразвуковых волн нефтегазовой залежью. Опубл. 25.12.98 // Научные открытия (сб. кратк. опис.). М., СПб.: РАЕН. 1999. Вып. 1. 58 с.
- Графов Б.М., Арутюнов С.Л., Казаринов В.Е., Кузнецов О.Л., Сиротинский Ю.В., Сунцов А.Е. Анализ геоакустического излучения нефтегазовой залежи при использовании технологии АНЧАР // Геофизика. 1998. № 5. С. 24–28.
- Holzner R., Eschle P., Zurcher H., Lambert M., Graf R., Dangel S., Meier P.F. Microtremor analysis to identify hydrocarbon reservoirs // First break. 2005. V. 23. № 5. P. 41–46. https://doi.org/10.3997/1365-2397.23.5.26560
- Lambert M.-A., Schmalholz S.M., Saenger E.H., Steiner B. Low-frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria // Geophysical Prospecting. 2009. V. 57. № 3. P. 393–411. https://doi.org/10.1111/j.1365-2478.2008.00734.x
- Makhous M., Rode E.D. (Paul), Kaya S. Application of the Infrasonic Passive Differential Spectroscopy (IPDS) for Hydrocarbon Direct Detection and Reservoir Monitoring in fields of the North-Caspian Basin: Achievements and Challenges // Abstracts. № SPE 125385. Reservoir Characterization and Simulation Conf. Abu Dhabi, UAE, 19–21 October. 2009. https://doi.org/10.2118/125385-MS
- Rode E.D., Nasr H., Makhous M. Is the future of seismic passive? // First break. 2010. V. 28. № 7. P. 77–80. https://doi.org/10.3997/1365-2397.28.7.40647
- Перспективный метод поиска нефтегазовых залежей. Беседа с академиком А.Ю. Цивадзе // Вестник РАН. 2014. Т. 84. № 3. С. 249–252. https://doi.org/10.7868/s0869587314030207
- Chebotareva I.Ya., Rode E.-D. Dissipative Seismicity for Hydrocarbon Reservoir Parameter Evaluation // Izvestiya, Physics of the Solid Earth. 2023. V. 59. № 4. Р. 650–661. https://doi.org/10.1134/S1069351323040031
- Чеботарева И.Я. Геофизические предпосылки нелинейного механизма формирования низкочастотной сейсмической аномалии над залежами углеводородов // Геофизические исследования. 2024. Т. 25. № 1. С. 86–102. https://doi.org/10.21455/gr2024.1-6
- Чеботарева И.Я., Дмитриевский А.Н. Диссипативная сейсмика // Физическая мезомеханика. 2020. Т. 23. № 1. С. 14–32. https://doi.org/10.24411/1683-805X-2020-11002
- Климонтович Ю.Л. Статистическая теория открытых систем. Т. 1. М.: Янус, 1995. 624 С.
- Кудрявцев Н.А. Генезис нефти и газа. Л.: Недра, 1973. 216 с.
- Pirson S.J. Significant Advances in Magneto-electric Exploration. Unconventional Methods in Exploration for Petroleum and Natural Gas // Proc. Symp. II-1979 Ed. Gottlieb B.M. Dallas, Texas: Southern Methodist University Press, 1981. P. 169–196.
- Makhous M., Rode E.D. (Paul), Kaya S. Application of the Infrasonic Passive Differential Spectroscopy (IPDS) for Hydrocarbon Direct Detection and Reservoir Monitoring in fields of the North-Caspian Basin: Achievements and Challenges // Abstracts. SPE 125385. Reservoir Characterization and Simulation Conf. Abu Dhabi, UAE, 19–21 October. 2009.
- Напреев Д.В., Оленченко В.В. Комплексирование геофизических и геохимических методов при поиске залежей углеводородов в Усть-Тымском нефтегазоносном районе // Нефтегазовая геология. Теория и практика. 2010. Т. 5. № 1. 8 с. http://www.ngtp.ru/rub/4/6_2010.pdf
- Валяев Б.М. Углеводородная дегазация Земли, геотектоника и происхождение нефти и газа // Дегазация Земли и генезис нефтегазовых месторождений. К 100-летию со дня рождения П.Н. Кропоткина. Ред. Дмитриевский А.Н., Валяев Б.М. М.: ГЕОС, 2011. С. 10–30.
- Кукуруза В.Д., Кривошеев В.Т., Иванова Е.З., Пекельная Е.В. Геоэлектрическая модель углеводородной залежи // Геоинформатика. 2019. № 4. С. 50–55.
- Shaidurov G.Ya., Kudinov D.S., Potylitsyn V.S., Shaidurov R.G. Observation of the seismoelectric effect in a gas condensate field in the Earth’s natural electromagnetic and seismic // Russian Geology and Geophysics. 2018. V. 59. № 5. P. 566–570.
- Турунтаев С.Б., Мельчаева О.Ю. Анализ триггерных сейсмических процессов при помощи методов нелинейной динамики // Триггерные эффекты в геосистемах. Материалы Всероссийского семинара-совещания. Ред. Адушкин В.В., Кочарян Г.Г. 2010. С. 124–136.
- Турунтаев С.Б., Ворохобина С.В., Мельчаева О.Ю. Выявление техногенных изменений сейсмического режима при помощи методов нелинейной динамики // Физика Земли. 2012. № 3. С. 52–65.
- Chebotareva I.Ya. Remote Evaluation of Hydrocarbon Reservoir Productivity under Big Noisiness // J. Mining Science. 2022. V. 58. № 3. P. 366–375. https://doi.org/10.1134/S1062739122030036
- Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J.D. Testing for nonlinearity in times series: the method of surrogate data // Physica D. 1992. V. 58. Pp. 77–94. https://doi.org/10.1016/0167-2789(92)90102-S
- Астахова Д.И., Сысоева М.В., Сысоев И.В. Влияние нелинейности на оценки связанности осцилляторов методом частной направленной когерентности // Известия вузов. Прикладная нелинейная динамика. 2019. Т. 27. Вып. 6. С. 8–24. https://doi.org/10.18500/0869-6632-2019-27-6-8-24
- Chavez M., Cazelles B. Detecting dynamic spatial correlation patterns with generalized wavelet coherence and non-stationary surrogate data // Scientific Reports 9. 2019. V. 9. Art. No 7389. 9 p. https://doi.org/10.1038/s41598-019-43571-2
- Hirata Y., Shiro M., Amigo J.M. Surrogate Data Preserving All the Properties of Ordinal Patterns up to a Certain Length // Entropy. 2019. V. 21. № 7. 713. 16 p. https://doi.org/10.3390/e21070713
- Keylock C.J. Hypothesis testing for nonlinear phenomena in the geosciences using synthetic, surrogate data // Earth and Space Science. 2019. V. 6. № 1. P. 41–58. https://doi.org/10.1029/2018EA000435
- Жегулин Г.В., Зимин А.В. Применение биспектрального вейвлет-анализа для поиска трехволновых взаимодействий в спектре внутренних волн // Морской гидрофизический журнал. 2021. Т. 37. № 2. С. 147–161. https://doi.org/10.22449/0233-7584-2021-2-147-161
- Гурбатов С.Н., Малахов А.Н., Прончатое-Рубцов Н.В. Об использовании спектров высших порядков в задаче диагностики интенсивных акустических шумов // Акуст. журн. 1987. Т. 33. № 5. С. 944–946.
- Гурбатов С.Н., Демин И.Ю., Прончатов-Рубцов Н.В. Об использовании биспектрального анализа в обратных задачах нелинейной акустики // Акуст. журн. 2017. Т. 63. № 6. С. 596–601.
- Schulte J., Policelli F., Zaitchik B. A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship // Nonlinear Processes in Geophysics. 2022. V. 29. № 1. P. 1–15. https://doi.org/10.5194/npg-29-1-2022
- Abroug I., Abcha N., Jarno A., Marin F. Laboratory study of non-linear wave–wave interactions of extreme focused waves in the nearshore zone // Natural Hazards and Earth System Sciences. 2020. V. 20. P. 3279–3291. https://doi.org/10.5194/nhess-20-3279-2020
- Gelman L., Solinski K., Ball A. Novel Higher-Order Spectral Cross-Correlation Technologies for Vibration Sensor-Based Diagnosis of Gearboxes // Sensors. 2020. V. 20. 5131. P. 1–23. https://doi.org/10.3390/s20185131
- Малахов А.Н. Кумулянтный анализ случайных негауссовых процессов и их преобразований. М.: Советское радио, 1978. 374 с.
- Sanaullah M. A review of higher order statistics and spectra in communication systems // Global journal of science frontier research. Physics and space science. 2013. V. 13. № 4. P. 31–50. https://doi.org/10.34257/GJSFRAVOL13IS4PG31
- Elgar S., Sebert G. Statistics of bicoherence and biphase // J. Geophysical Research. 1989. V. C94. P. 10993–10998. https://doi.org/10.1029/JC094iC08p10993
- Монахов Ф.И. Низкочастотный сейсмический шум Земли. М.: Наука, 1977. 95 с.
- Винник Л.П. Структура микросейсм и некоторые вопросы группирования в сейсмологии. М.: Наука, 1968. 104 с.
- Ryzhov V., Ryzhov D., Sharapov I., Feofilov S., Smirnov T., Starostin I., Bitrus R.P., Chichester B. Offshore field trial application of low-frequency passive microseismic technology in the North Sea for exploration, appraisal and development of hydrocarbon deposits // First break. 2021. V. 39. № 4. P. 45–50. https://doi.org/10.3997/1365-2397.fb2021027
- Birkelo B., Duclos M., Artman B., Schechinger B., Witten B., Goertz A., Weemstra K., Spectraseis A.G., Hadidi M.T. A passive low-frequency seismic survey in Abu Dhabi–Shaheen project // SEG Denver 2010 Annual Meeting. 2010. P. 2207–2211.
- Groos J.C. and Ritter J.R.R. Time domain classification and quantification of seismic noise in an urban environment // Geophys. J. Int. 2009. V. 179. P. 1213–1231. https://doi.org/10.1111/j.1365-246X.2009.04343.x
- Hinich M.J. Testing for Gaussianity and Linearity of a Stationary Time Series // J. Time Series Analysis. 1982. V. 3. № 3. P. 169–176. https://doi.org/10.1111/j.1467-9892.1982.tb00339.x
- Hinich M.J., Mendes E.M., Stone L. Detecting Nonlinearity in Time Series: Surrogate and Bootstrap Approaches // Studies in Nonlinear Dynamics & Econometrics. 2005. V. 9. № 4. P. 1–13. https://doi.org/10.2202/1558-3708.1268
- Birkelund Y., Hanssen A. Improved bispectrum based tests for Gaussianity and linearity // Signal Processing. 2009. V. 89. № 12. P. 2537–2546. https://doi.org/10.1016/j.sigpro.2009.04.013
- Hinich M.J., Wolonsky M.A. A test for aliasing using bispectral analysis // J. Amer. Stat. Assoc. 1988. V. 83. P. 499–502.
补充文件
