Equations of Multimoment Hydrodynamics in the Problem of Flowing Around a Sphere. 2. The Basic Asymmetric Solution
- Авторлар: Lebed I.V.1
-
Мекемелер:
- Institute of Applied Mechanics of the Russian Academy of Sciences
- Шығарылым: Том 44, № 6 (2025)
- Беттер: 97-108
- Бөлім: Dynamics of transport processes
- URL: https://rjsvd.com/0207-401X/article/view/686554
- DOI: https://doi.org/10.31857/S0207401X25060088
- ID: 686554
Дәйексөз келтіру
Аннотация
The equations of multimoment hydrodynamics are used to interpret flows behind the sphere that do not have axial symmetry. In accordance with the general approach to solving the equations of multimoment hydrodynamics, a set of nonlinear first-order differential equations for unknown coefficients is derived. Numerical integration of the derived equations shows that a high value of the turbulence coefficient provides a transition from the basic axisymmetric solution to the basic weakly asymmetric solution. It was found that the asymmetric solution is not stable. The instability of the asymmetric solution creates prospects for interpreting the observed evolution of weakly asymmetric flow. It becomes possible to reproduce the vortex shedding observed at moderately high values of the Reynolds number. There are prospects for interpreting the turbulence that develops with a further increase in the Reynolds number.
Негізгі сөздер
Авторлар туралы
I. Lebed
Institute of Applied Mechanics of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: lebed-ivl@yandex.ru
Ресей, Moscow
Әдебиет тізімі
- Lebed I. V. // Khim. Fizika. 2025. V. 44.
- Lebed I. V. // Chem. Phys. Rep. 1997. V. 16. P. 1263.
- Tikhonov A. N., Samarskii A. A. Equations of Mathematical Physics. M.: Gostekhizdat, 1953.
- Lebed I.V. The foundations of multimoment hydrodynamics, Part 1: ideas, methods and equations. N.Y.: Nova Science Publishers, 2018.
- Glansdorff P., Prigogine I. Thermodynamic theory of structure, stability, and fluctuations. N.Y.: Willey, 1971.
- Taneda S. // J. Phys. Soc. Jpn. 1956. V. 11. № 10. P. 1104. http:// doi.org/10.1143/JPSJ.11.1104
- Chomaz J. M., Bonneton P., Hopfinger E. J. // J. Fluid Mech. 1993. V. 234. P. 1. http:// doi.org/10.1017/S0022112093002009
- Magarvey R. H., Bishop R. L. // Can. J. Phys. 1961. V. 39. № 7. P. 1418.
- Magarvey R. H., MacLatchy C. S. // Ibid. 1965. V. 43. № 9. P. 1649.
- Winnikow S., Chao B. T. // Phys. Fluids 1966. V. 9. № 1. P. 50.
- Sakamoto H., Haniu H. // J. Fluid Mech. 1995. V. 287. P. 151. http:// doi.org/10.1017/S0022112095000905
- Schuster H.G. Deterministic Chaos. Weinheim: Physik Verlag, 1984.
- Natarajan R., Acrivos A. // J. Fluid Mech. 1993. V. 254. P. 323. http:// doi.org/10.1017/S0022112093002150
- Tomboulides A. G., Orszag S. A. // Ibid. 2000. V. 416. P. 45. http:// doi.org/10.1017/S0022112000008880
- Lebed I. V. // Russ. J. Phys. Chem. B. 2014. V. 8. P. 240. http:// doi.org/10.1134/S1990793114020171
- Kiselev A.Ph., Lebed I.V. // Chaos, Solitons, Fractals, 2021. V. 142. №110491. http:// doi.org/10.1134/S1990793121030222
- Lebed I. V. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 370. http:// doi.org/10.1134/S199079312202018X
- Lebed I. V. // Russ. J. Phys. Chem. B 2023. V. 17. P. 1194. http:// doi.org/10.1134/S1990793123050056
- Lebed I. V. // Russ. J. Phys. Chem. B 2024. V. 18. P. 1396. http:// doi.org/10.1134/S1990793124700957
- Lebed I. V. // Russ. J. Phys. Chem. B 2024. V. 18. P. 1405. http:// doi.org/10.1134/S1990793124700969
Қосымша файлдар
