Monoclonal AntibodyAgainst the Oligomeric Form of the Large C-Terminal Fragment (Met225–Ile412) of Hemolysin II of Bacillus cereus are Capable of Strain-Specific Suppression of Hemolytic Activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pore-forming toxin hemolysin II (HlyII) secreted by the gram-positive bacterium Bacillus cereus is one of the main pathogenic factors of this microorganism. The action of HlyII leads to cell lysis due to pore formation on membranes. Monoclonal antibodies against the large C-terminal fragment (Met225–Ile412, HlyIILCTD) of HlyII B. cereus were obtained using hybridoma technology with the use of a recombinant soluble form of HlyIILCTD as an antigen, which was obtained using the chaperone protein SlyD. Monoclonal antibody LCTD-83 inhibited the hemolytic activity of HlyII, the degree of protection depended on the presence/absence of proline at position 324 in the primary sequence of the toxin. The antibody most effectively inhibited erythrocyte hemolysis caused by HlyII B-771, in the sequence of which Pro is present at position 324 instead of Leu. It was shown that the LCTD-83 antibody interacts with the formed pores on the erythrocyte membranes, thereby blocking the possible release of intracellular contents. HlyII and its mutant forms were obtained using recombinant producer strains of Escherichia coli BL21 (DE3). The ability of antibodies to recognize antigens was characterized by enzyme-linked immunosorbent assay (ELISA) and immunoblotting; immunoprecipitation was used to demonstrate interaction with the membrane pores formed by the toxin. LCTD-83 interacted less effectively with the full-length toxin than with HlyIILCTD, which confirmed the fact that pore formation is accompanied by a change in the toxin conformation. In this regard, antibodies interacting with its oligomeric form are promising for suppressing the cytolytic effect of hemolysin II. LCTD-83 has the potential to identify ways to neutralize the toxin.

Full Text

Restricted Access

About the authors

O. S. Vetrova

Branch of the Federal State Budgetary Institution of Science, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: nrudkova@mail.ru
Russian Federation, prosp. Nauki 6, Pushchino, 142290

N. V. Rudenko

Branch of the Federal State Budgetary Institution of Science, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Author for correspondence.
Email: nrudkova@mail.ru
Russian Federation, prosp. Nauki 6, Pushchino, 142290

A. V. Zamyatina

Branch of the Federal State Budgetary Institution of Science, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: nrudkova@mail.ru
Russian Federation, prosp. Nauki 6, Pushchino, 142290

A. S. Nagel

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (IBFM RAS) “Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Email: nrudkova@mail.ru
Russian Federation, prosp. Nauki 5, Pushchino, 142290

Z. I. Andreeva-Kovalevskaya

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (IBFM RAS) “Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Email: nrudkova@mail.ru
Russian Federation, prosp. Nauki 5, Pushchino, 142290

A. V. Siunov

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (IBFM RAS) “Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Email: nrudkova@mail.ru
Russian Federation, prosp. Nauki 5, Pushchino, 142290

F. A. Brovko

Branch of the Federal State Budgetary Institution of Science, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: nrudkova@mail.ru
Russian Federation, prosp. Nauki 6, Pushchino, 142290

A. S. Solonin

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (IBFM RAS) “Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Email: nrudkova@mail.ru
Russian Federation, prosp. Nauki 5, Pushchino, 142290

A. P. Karatovskaya

Branch of the Federal State Budgetary Institution of Science, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: nrudkova@mail.ru
Russian Federation, prosp. Nauki 6, Pushchino, 142290

References

  1. Thery M., Cousin V.L., Tissieres P., Enault M., Morin L. // Front. Pediatr. 2022. V. 10. P. 978250. https://doi.org/10.3389/fped.2023.1178208
  2. Logan N.A. // J. Appl. Microbiol. 2012. V. 112. P. 417– 429. https://doi.org/10.1111/j.1365-2672.2011.05204.x
  3. Messelhäußer U., Ehling-Schulz M. // Curr. Clin. Microbiol. Rep. 2018. V. 5. P. 120–125. https://doi.org/10.1007/s40588-018-0095-9
  4. McDowell R.H., Sands E.M., Friedman H. // In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023. https://www.ncbi.nlm.nih.gov/books/NBK459121/
  5. Cadot C., Tran S.L., Vignaud M.L., De Buyser M.L., Kolstø A.B., Brisabois A., Nguyen-Thé C., Lereclus D., Guinebretière M.H., Ramarao N. // J. Clin. Microbiol. 2010. V. 48. P. 1358–1365. https://doi.org/10.1128/JCM.02123-09
  6. Ramarao N., Sanchis V. // Toxins (Basel). 2013. V. 5. P. 1119–1139. https://doi.org/10.3390/toxins5061119
  7. Shenggang D., Yue Y., Yunchang G., Donglei L., Ning L., Zhitao L., Jinjun L., Yuyan J., Santao W., Ping F., Jikai L., Hong L. // China CDC Weekly. 2023. V. 5. Р. 737–741. https://doi.org/10.46234/ccdcw2023.140
  8. European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC) // EFSA J. 2023. V. 21. P. e8442. https://doi.org/10.2903/j.efsa.2023.8442
  9. Dietrich R., Jessberger N., Ehling-Schulz M., Märtlbauer E., Granum P.E. // Toxins. 2021. V. 13. P. 98. https://doi.org/10.3390/toxins13020098
  10. Peraro M.D., van der Goot F.G. // Nat. Rev. Microbiol. 2015. V. 14. P. 77–92. https://doi.org/10.1038/nrmicro.2015.3
  11. Hu H., Liu M., Sun S. // Drug Des. Devel. Ther. 2021. V. 15. P. 3773–3781. https://doi.org/10.2147/DDDT.S322393
  12. Miles G., Bayley H., Cheley S. // Protein Sci. 2002. V. 11. P. 1813–1824. https://doi.org/doi.org/10.1110/ps.0204002
  13. Chow S.K., Casadevall A. // Toxins (Basel). 2012. V. 4. P. 430–454. https://doi.org/10.3390/toxins4060430
  14. Rudenko N.V., Karatovskaya A.P., Zamyatina A.V., Siunov A.V., Andreeva-Kovalevskaya Z.I., Nagel A.S., Brovko F.A., Solonin A.S. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 321–326. https://doi.org/10.31857/S013234232003029X
  15. Nagel A.S., Rudenko N.V., Luchkina P.N, Karatovskaya A.P., Zamyatina A.V., Andreeva-Kovalevskaya Z.I., Siunov A.V., Brovko F.A., Solonin A.S. // Molecules. 2023. V. 28. P. 3581. https://doi.org/10.3390/molecules28083581
  16. Rudenko N., Nagel A., Zamyatina A., Karatovskaya A., Salyamov V., Andreeva-Kovalevskaya Z., Siunov A., Kolesnikov A., Shepelyakovskaya A., Boziev K., Melnik B., Brovko F., Solonin A. // Toxins (Basel). 2020. V. 12. P. 806. https://doi.org/10.3390/toxins12120806
  17. Valeva A., Palmer M., Bhakdi S. // Biochemistry. 1997. V. 36. P. 13298–13304. https://doi.org/10.1021/bi971075r
  18. Song L., Hobaugh M.R., Shustak C., Cheley S., Bayley H., Gouaux J.E. // Science. 1996. V. 274. P. 1859–1866. https://doi.org/10.1126/science.274.5294.1859
  19. Menestrina G., Serra M.D., Prévost G. // Toxicon. 2001. V. 39. P. 1661–1672. https://doi.org/10.1016/s0041-0101(01)00153-2
  20. von Hoven G., Qin Q., Neukirch C., Husmann M., Hellmann N. // Biol. Chem. 2019. V. 400. P. 1261– 1276. https://doi.org/10.1515/hsz-2018-0472
  21. Rasool S., Martinez-Coria H., Wu J.W., LaFerla F., Glabe C.G. // J. Neurochem. 2013. V. 126. P. 473–482. https://doi.org/10.1111/jnc.12305
  22. Adekar S.P., Takahashi T., Jones R.M., Al-Saleem F.H., Ancharski D.M., Root M.J., Kapadnis B.P., Simpson L.L., Dessain S.K. // PLoS One. 2008. V. 3. P. e3023. https://doi.org/10.1371/journal.pone.0003023
  23. Reason D., Liberato J., Sun J., Camacho J., Zhou J. // Toxins (Basel). 2011. V. 3. P. 979–990. https://10.3390/toxins3080979
  24. Chi X., Yan R., Zhang J., Zhang G., Zhang Y., Hao M., Zhang Z., Fan P., Dong Y., Yang Y., Chen Z., Guo Y., Zhang J., Li Y., Song X., Chen Y., Xia L., Fu L., Hou L., Xu J., Yu C., Li J., Zhou Q., Chen W. // Science. 2020. V. 369. P. 650–655. https://doi.org/10.1126/science.abc6952
  25. Rudenko N.V., Nagel A.S., Melnik B.S., Karatovskaya A.P., Vetrova O.S., Zamyatina A.V., AndreevaKovalevskaya Z.I., Siunov A.V., Shlyapnikov M.G., Brovko F.A., Solonin A.S. // Int. J. Mol. Sci. 2023. V. 24. P. 16437. https://doi.org/10.3390/ijms242216437
  26. Joseph A.P., Srinivasan N., de Brevern A.G. // Amino Acids. 2012. V. 43. P. 1369–1381. https://doi.org/10.1007/s00726-011-1211-9
  27. Schmidpeter P.A., Koch J.R., Schmid F.X. // Biochim. Biophys. Acta. 2015. V. 1850. P. 1973–1982. https://10.1016/j.bbagen.2014.12.019
  28. Vakilian M. // Clin. Immunol. 2022. V. 234. P. 108896. https://doi.org/10.1016/j.clim.2021.108896
  29. Ünal C.M., Steinert M. // Microbiol. Mol. Biol. Rev. 2014. V. 78. P. 544–571. https://doi.org/10.1128/MMBR.00015-14
  30. Ladani S.T., Souffrant M.G., Barman A., Hamelberg D. // Biochim. Biophys. Acta. 2015. V. 1850. P. 1994–2004. https://doi.org/10.1016/j.bbagen.2014.12.023
  31. Nagel A.S., Vetrova O.S., Rudenko N.V., Karatovskaya A.P., Zamyatina A.V., Andreeva-Kovalevskaya Z.I., Salyamov V.I., Egorova N.A., Siunov A.V., Ivanova T.D., Boziev K.M., Brovko F.A., Solonin A.S. // Int. J. Mol. Sci. 2024. V. 25. P. 5327. https://doi.org/10.3390/ijms25105327
  32. Köhler G., Milstein C. // Nature. 1975. V. 256. P. 495– 497.
  33. SileksMag-COOH. Карбоксилированные магнитные частицы для прямой ковалентной иммобилизации антител, белков, ферментов, нуклеотидных зондов. Версия 210217. https://sileks.com/assets/files/protocol-for-kits/sileksmag-cooh-v_210217-rus.pdf
  34. Endotoxin Extractor: полимер для удаления эндотоксинов из растворов. ООО “Силекс”, 2007–2020. https://sileks.com/assets/files/protocol-for-kits/endotoxin-extractor-ver201129.pdf
  35. Laemmli U.K. // Nature. 1970. V. 227. P. 680–685. https://doi.org/doi.org/10.1038/227680a0
  36. Zamyatina A.V., Rudenko N.V., Karatovskaya A.P., Shepelyakovskaya A.O., Siunov A.V., Andreeva-Kovalevskaya Zh.I., Nagel A.S., Salyamov V.I., Kolesnikov A.S., Brovko F.A., Solonin A.S. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 1214–1220. https://doi.org/10.31857/S013234232006038X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. HlyIILCTD immunoblotting with mAbs. Before electrophoretic separation, the samples were boiled in 1% SDS for 10 minutes. M is a molecular weight marker (Abcam, Great Britain); 1 is stained with LCTD-82; 2 is stained with LCTD-83; 3 is stained with LCTD-84.

Download (155KB)
3. 2. Comparison of the effectiveness of the interaction of mAbs against HlyIILCTD (5 micrograms/ml) with immobilized HlyII of various strains and HlyIILCTD.

Download (295KB)
4. 3. HlyII immunoblotting: M – marker of molecular weight; 1 – monomeric form; 2 – pores interacting with LCTD-83 immobilized on magnetic particles; 3 – isotype control; 4 – pores after delipidization. The tracks were stained with biotinylated mAbs LCD-71 [15] and streptavidin conjugated with horseradish peroxidase.

Download (201KB)
5. Fig. 4. Experimental scheme. Precipitation of LCD-83 and others formed by HlyII B771 in the erythrocyte membrane.

Download (469KB)

Copyright (c) 2025 Russian Academy of Sciences