Синтез растворимого аддитивного полинорборнена, содержащего в боковой цепи дигидроантраценовые фрагменты

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Исследована аддитивная сополимеризация норборнена, содержащего фрагмент 9,10-дигидроантрацена, с 5-н-гексилнорборненом в присутствии однокомпонентного катализатора на основе катионного комплекса Pd с N-гетероциклическим карбеновым лигандом. При содержании 5-н-гексилнорборнена от 25 до 75 мол% с выходом до 97% образуются растворимые полимеры со средневесовой молекулярной массой до 1.2·106 и индексом полидисперсности <2. Состав сополимера близок к составу смеси мономеров, а условия сополимеризации практически на него не влияют.

Texto integral

Acesso é fechado

Sobre autores

Дмитрий Алентьев

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Autor responsável pela correspondência
Email: d.alentiev@ips.ac.ru
ORCID ID: 0000-0002-5010-6044

к.х.н.

Rússia, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29

Максим Зоткин

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: d.alentiev@ips.ac.ru
ORCID ID: 0000-0002-8034-9952
Rússia, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29

Максим Бермешев

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: d.alentiev@ips.ac.ru
ORCID ID: 0000-0003-3333-4384

д.х.н., доцент

Rússia, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29

Bibliografia

  1. Wang Y., Ghanem B.S., Han Y., Pinnau I. State-of-the-art polymers of intrinsic microporosity for high-performance gas separation membranes // Curr. Opin. Chem. Eng. 2022. V. 35. ID 100755. https://doi.org/10.1016/j.coche.2021.100755
  2. Morris R. E., Wheatley P. S. Gas storage in nanoporous materials // Angew. Chem. Int. Ed. 2008. V. 47. P. 4966–4981. https://doi.org/10.1002/anie.200703934
  3. Ширяева В. Е., Попова Т. П., Канатьева А. Ю., Королев А. А., Курганов А. А. Неподвижные фазы для газовой хроматографии на основе полимера с внутренней пористостью PIM-1 // Журн. физ. химии. 2019. Т. 93. № 5. С. 743–748. https://doi.org/10.1134/S0044453719050261 [Shiryaeva V. E., Popova T. P., Kant′eva A. Y., Korolev A. A., Kurganov A. A. Stationary phases based on PIM-1 polymer of intrinsic microporosity for gas chromatography // Russ. J. Phys. Chem. A. 2019. V. 93. P. 946–950. https://doi.org/10.1134/S0036024419050261].
  4. Zhang Z., Zheng J., Premasiri K., Kwok M.-H., Li Q., Li R., Zhang S., Litt M.H., Gao X.P.A., Zhu L. High-κ polymers of intrinsic microporosity: A new class of high temperature and low loss dielectrics for printed electronics // Mater. Horizons. 2020. V. 7. P. 592–597. https://doi.org/10.1039/C9MH01261C
  5. Zotkin M. A., Zaitsev K. V., Alentiev D. A. Incorporation of carbocyclic moieties into polymer structure: A powerful way to polymers with increased microporosity // Polymers. 2025. V. 17. ID 1100. https://doi.org/10.3390/polym17081100
  6. Zotkin M. A., Alentiev D. A., Shorunov S. V., Sokolov S. E., Gavrilova N. N., Bermeshev M. V. Microporous polynorbornenes bearing carbocyclic substituents: Structure-property study // Polymer. 2023. V. 269. ID 125732. https://doi.org/10.1016/j.polymer.2023.125732
  7. Bermesheva E. V., Medentseva E. I., Khrychikova A. P., Wozniak A. I., Guseva M. A., Nazarov I. V., Morontsev A. A., Karpov G. O., Topchiy M. A., Asachenko A. F., Danshina A. A., Nelyubina Y. V., Bermeshev M. V. Air-stable single-component Pd-catalysts for vinyl-addition polymerization of functionalized norbornenes // ACS Catal. 2022. V. 12. P. 15076–15090. https://doi.org/10.1021/acscatal.2c04345
  8. Li M., Fang Y., Cai Z., Eisen M. S. Nickel- and palladium-catalyzed copolymerizations of norbornene with polar α-olefins // ChemCatChem. 2024. V. 16. ID e202301731. https://doi.org/10.1002/cctc.202301731
  9. Kim E. C., Kim M.-J., Ho L. N. T., Lee W., Ka J.-W., Kim D.-G., Shin T. J., Huh K. M., Park S., Kim Y. S. Synthesis of vinyl-addition polynorbornene copolymers bearing pendant n-alkyl chains and systematic investigation of their properties // Macromolecules. 2021. V. 54. P. 6762–6771. https://doi.org/10.1021/acs.macromol.1c00858
  10. Wozniak A. I., Bermesheva E. V., Borisov I. L., Volkov A. V., Petukhov D. I., Gavrilova N. N., Shantarovich V. P., Asachenko A. F., Topchiy M. A., Finkelshtein E. S., Bermeshev M. V. Switching on/switching off solubility controlled permeation of hydrocarbons through glassy polynorbornenes by the length of side alkyl groups // J. Membr. Sci. 2022. V. 641. ID 119848. https://doi.org/10.1016/j.memsci.2021.119848
  11. Riga A. T. Distinguishing amorphous polymer blends from copolymers by wide angle X-ray diffraction // Polym. Eng. Sci. 1978. V. 18. P. 1144–1147. https://doi.org/10.1002/pen.760181504

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme

Baixar (305KB)
3. Fig. 1. NMR spectrum 1H (a) and 13C (b) of the copolymer containing 53% 9,10-(exo-norbornen-5,6-yl)-9,10-dihydroanthracene units (in CDCl3).

Baixar (331KB)
4. Fig. 2. Thermogravimetric analysis curves of copolymers of 9,10-(exo-norbornene-5,6-yl)-9,10-dihydroanthracene with 5-n-hexylnorbornene in a nitrogen atmosphere and in air.

Baixar (186KB)
5. Fig. 3. Diffraction patterns of addition copolymers of 9,10-(exo-norbornene-5,6-yl)-9,10-dihydroanthracene with 5-n-hexylnorbornene.

Baixar (186KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025