Целлюлоза и бумага: получение, свойства, применение. Бумажные продукты электротехнического назначения (обзор)
- Authors: Макаров И.С.1, Щербак Н.В.2, Севастьянова Ю.В.2
-
Affiliations:
- Институт нефтехимического синтеза им. А. В. Топчиева РАН
- Северный (Арктический) федеральный университет им. М. В. Ломоносова
- Issue: Vol 98, No 3 (2025)
- Pages: 176-197
- Section: Articles
- URL: https://rjsvd.com/0044-4618/article/view/688167
- DOI: https://doi.org/10.31857/S0044461825030013
- EDN: https://elibrary.ru/LDVYMZ
- ID: 688167
Cite item
Abstract
Развитие лесохимии с целью получения новых и замещения уже используемых функциональных материалов продукцией на базе лигноцеллюлозного сырья является важнейшим направлением научно-технического прогресса XXI века. Целлюлозу по праву относят к неисчерпаемому ресурсу с постоянно возобновляемой сырьевой базой. Ее уникальные свойства обеспечиваются системой меж- и внутримолекулярных водородных связей. Данная система ответственна за высокую термическую и химическую стойкость полимера, высокие механические характеристики, сорбционные и другие свойства. Инертность целлюлозы открывает возможности для ее использования в медицине, электронике, космонавтике и др. В данном обзоре рассматриваются вопросы, посвященные эволюции целлюлозы от исходного сырья к готовому продукту — бумаге для электрических компонентов. Основными требованиями, выдвигаемыми к таким бумагам, являются их химическая и термическая стойкость, транспортные свойства — селективность и пропускная способность, внутреннее сопротивление, прочность и т. д. Оптимизация этих свойств возможна за счет как физико-химической модификации целлюлозы, так и создания плотной сетки физических зацеплений между волокнами. Химический состав исходного сырья играет одну из ключевых ролей в формировании будущих свойств получаемой бумаги. Как правило, приветствуется использование целлюлозы с высоким содержанием альфа-фракции, низкой долей лигнина и гемицеллюлозы, пектинов. Металлы и неорганические соединения должны быть полностью исключены из состава используемой целлюлозы. Введение в гидратцеллюлозные волокна натуральных и синтетических волокон позволяет изменять не только механические и транспортные, но и электрические свойства бумаги. Другим перспективным направлением по оптимизации свойств конденсаторных и сепараторных бумаг является создание тонких поверхностных слоев целлюлозной или иной природы.
Full Text

About the authors
Игорь Сергеевич Макаров
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Author for correspondence.
Email: makarov@ips.ac.ru
ORCID iD: 0000-0001-8183-4215
к.х.н.
Russian Federation, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29Наталья Владимировна Щербак
Северный (Арктический) федеральный университет им. М. В. Ломоносова
Email: makarov@ips.ac.ru
ORCID iD: 0000-0002-4288-2895
к.т.н., доцент
Russian Federation, 163002, г. Архангельск, наб. Северной Двины, д. 17Юлия Вениаминовна Севастьянова
Северный (Арктический) федеральный университет им. М. В. Ломоносова
Email: makarov@ips.ac.ru
ORCID iD: 0000-0002-1806-9052
к.т.н., доцент
Russian Federation, 163002, г. Архангельск, наб. Северной Двины, д. 17References
- Huang H. Ancient Egyptian Medicine // Encyclopedia. URL: https://encyclopedia.pub/entry/30441 (accessed on 07 July 2023).
- Tsien T. H. Paper and printing. Science and civilisation in China. Cambridge, UK: Cambridge University Press, 1985. P. 504.
- Bloom J. M. Papermaking: The Historical Diffusion of an Ancient Technique. Mobilities of Knowledge. Knowledge and Space. Springer, Cham. 2017. V. 10. P. 51–66. https://doi.org/10.1007/978-3-319-44654-7_3
- Alfaro A., Perez A., Garcia J. C., Lopez F., Zamudio M. A. M., Rodriguez A. Ethanol and soda pulping of Tagasaste wood: Neural fuzzy modeling // Cellulose Chem. Technol. 2009. V. 43. N 7–8. P. 295–306.
- Godlewska K., Jastrzębski M. Paper and board production and consumption 2017 in Poland compared to other European countries // Przegl. Papiern. 2018. V. 74. P. 681–689.
- Rodrigues B. P., da Silva Oliveira J. T., Demuner B. J., Mafia R. G., Vidaurre G. B. Chemical and kraft pulping properties of young eucalypt trees affected by physiological disorders // Forests. 2022. V. 13. P. 504. https://doi.org/10.3390/f13040504
- Akim E. L. Bio-refaining drevesiny (Bio-Refining of Wood). Abstracts of Papers. Conf. Int. Cooperation in the Feld of Bioenergy. Moscow, October 22–23, 2013. URL: https://www.unece.org/fileadmin/DAM/timber/meetings/20130522/presentations/06-Biotechnology_Platform_Eduard_Akim_Rissian.pdf
- Khasanah N., van Noordwijk M., Ningsih H., Rahayu S. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia // Agric. Ecosyst. Environ. 2015. V. 211. P. 195–206. https://doi.org/10.1016/j.agee.2015.06.009
- Liu X. B., Herbert S. J., Hashemi A. M., Zhang X., Ding G. Effects of agricultural management on soil organic matter and carbon transformation — A review // Plant Soil Environ. 2006. V. 52. P. 531–543.
- Widyati E., Nuroniah H. S., Tata H. L., Mindawati N., Lisnawati Y., Darwo, Abdulah L., Lelana N. E., Mawazin, Octavia D., Prameswari D., Rachmat H. H., Sutiyono, Darwiati W., Wardani M., Kalima T., Yulianti, van Noordwijk M. Soil degradation due to conversion from natural to plantation forests in Indonesia // Forests. 2022. V. 13. P. 1913. https://doi.org/10.3390/f13111913
- Motaung T. E., Linganiso L. Z. Critical review on agrowaste cellulose applications for biopolymers // Int. J. Plast. Technol. 2018. V. 22. P. 185–216. https://doi.org/10.1007/s12588-018-9219-6
- Song K., Ji, Y., Wang L., Wei Y., Yu, Z. A green and environmental benign method to extract cellulose nanocrystal by ball mill assisted solid acid hydrolysis // J. Clean. Prod. 2018. V. 196. P. 1169–1175. https://doi.org/10.1016/j.jclepro.2018.06.128
- Kostryukov S. G., Malov N. A., Matyakubov Kh. B., Konushkin I. A. Quantitative determination of lignin in plant materials using IR spectroscopy. Bulletin of Perm University // Chemistry. 2022. V. 12. N 1. P. 5–16. http://doi.org/10.17072/2223-1838-2022-1-5-16
- Kostryukov S. G., Petrov P. S., Kalyazin V. A., Masterova Yu. Yu., Tezikova V. S., Khluchina N. A., Labzina L. Ya., Alalvan D. Kh. Determination of lignin content in plant materials using solid state 13C NMR spectroscopy // Polym. Sci. Ser. B. 2021. V. 63. N 5. P. 544–552. http://doi.org/10.1134/S1560090421050067
- Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A. Nanocelluloses: A new family of nature-based materials // Angew. Chem. Int. Ed. Engl. 2011. V. 50. N 24. P. 5438–5466. http://doi.org/10.1002/anie.201001273
- Nishiyama Y., Langan P., Chanzy H. Crystal structure and hydrogen bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction // J. Am. Chem. Soc. 2002. V. 124. N 31. P. 9074–9082. https://doi.org/10.1021/ja0257319
- Belouadah Z., Ati A., Rokbi M. Characterization of new cellulosic fiber from lygeum spartum Lygeum spartum L // Carbohydrate Polym. 2015. V. 134. P. 429–437.
- Negawo T.A., Polat Y., Buyuknalcaci F.N., Kilic A., Saba N., Jawaid M. Mechanical, morphological, structural and dynamic mechanical properties of alkali treated ensete stem fibers reinforced unsaturated polyester composites // Compos. Struct. 2019. V. 207. P. 589. https://doi.org/10.1016/j.compstruct.2018.09.043
- Bajpai P. Biermannʹs Handbook of Pulp and Paper. Third Ed. Elsevier, 2018. P. 295–351. https://doi.org/10.1016/B978-0-12-814240-0.00012-4
- Barampouti E.M., Mai S., Moustakas K., Malamis D., Loizidou M. Status and perspectives of agricultural residues in a circular and resource-efficient context. CHAPTER 3 // Clean Energy and Resources Recovery. Biomass Waste Based Biorefineries. 2021. V. 1. P. 49–102. https://doi.org/10.1016/B978-0-323-85223-4.00018-X
- Tao S., Zhang C., Chen Y., Qin S., Qi H. High strength holocellulose paper from bamboo as biodegradable packaging tape // Carbohydrate Polym. 2022. V. 283. P. 119151. https://doi.org/10.1016/j.carbpol.2022.119151
- Yang X., Berglund L. A. Structural and ecofriendly holocellulose materials from wood: Microscale fibers and nanoscale fibrils // Advanced Mater. 2021. V. 33. N 28. P. 2001118. https://doi.org/10.1002/adma.202001118
- Ma C., Kim T.-H., Liu K., Ma M.-G., Choi S.-E., Si C. Multifunctional lignin-based composite materials for emerging applications // Front. Bioeng. Biotechnol. 2021. V. 9. P. 708976. https://doi.org/10.3389/fbioe.2021.708976
- Fache M., Boutevin B., Caillol S. Vanillin production from lignin and its use as a renewable chemical // ACS Sustainable Chem. Eng. 2016. V. 4. N 1. P. 35–46. https://doi.org/10.1021/acssuschemeng.5b01344
- Yu Y., Tyrikos-Ergas Th., Zhu Y., Fittolani G., Bordoni V., Singhal A., Fair R.J., Grafmüller A., Seeberger P. H., Delbianco M. Systematic hydrogen-bond manipulations to establish polysaccharide structure–property correlations // Angew. Chem. 2019. V. 58. N 37. P. 13127–13132. https://doi.org/10.1002/anie.201906577
- Christie R. M. Colour Chemistry // Royal Society of Chemistry, 2001. P. 205.
- Wiener J., Kovacic V., Dejlova P. Differences between flax and hemp // AUTEX Res. J. 2003. V. 3. N 2. P. 58–63.
- Liu M., Thygesen A., Summerscales J., Meyer A. S. Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review // Industrial Crops and Products. 2017. V. 108. P. 660–683. https://doi.org/10.1016/j.indcrop.2017.07.027
- Целлюлоза и ее производные / Под ред. Н. Байклза и Л. Сегала. Пер. с англ. под ред. З. А. Роговина. М.: Мир, 1974. C. 512 [Cellulose and cellulose derivatives / Ed. by N. M. Bikales, L. Segal. New-York; London; Sydney; Toronto: Wiley-Intersci., 1971. P. 510].
- Tarasov D., Leitch M., Fatehi P. Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review // Biotechnol. Biofuels. 2018. V. 11. P. 269. https://doi.org/10.1186/s13068-018-1262-1
- Zhang J., Zhang H., Zhang J. Evaluation of liquid ammonia treatment on surface characteristics of hemp fiber // Cellulose. 2014. V. 21. P. 569–579. https://doi.org/10.1007/s10570-013-0097-y
- Saka S., Hosoya S., Goring D. The distribution of lignin in hardwood as determined by bromination with TEM-EDXA. Kyoto, Int. Symp. // Wood Pulp. Chem. 1983. P. 24–29.
- Fengel B., Wegener G. Wood: Chemistry, Ultrastructure, Reactions. Berlin and New York: Walter de Gruyter, 2011.
- Brannvall E. The limits of delignification in kraft cooking // BioResources. 2017. V. 12. P. 2081–2107.
- Макаров И. C., Голова Л. К. Виноградов М. И. Егоров Ю. А., Куличихин В. Г., Михайлов Ю. М. Новое гидратцеллюлозное волокно из льняной целлюлозы // Рос. хим. журн. (РХО им. Д. И. Менделеева). 2020. T. 64. № 1. C. 13–21. https://doi.org/10.6060/rcj.2020641.2 [Makarov I. S., Golova L. K., Vinogradov M. I., Egorov Yu. E., Kulichikhin V. G., Mikhailov Yu. M. New hydrated cellulose fiber based on flax cellulose // Russ. J. Gen. Chem. 2021. V. 91. P. 1807–1815. https://doi.org/10.1134/S1070363221090280].
- Jankauskienė Z., Butkutė B., Gruzdevienė E., Cesevičienė J., Fernando A. L. Chemical composition and physical properties of dew- and water-retted hemp fibers // Industrial Crops and Products. 2015. V. 75. Part B. P. 206–211. https://doi.org/10.1016/j.indcrop.2015.06.044
- Day A., Ruel K., Neutelings G., Cronier D., David H., Hawkins S., Chabbert B. Lignification in the flax stem: Evidence for an unusual lignin in bast fibers // Planta. 2005. V. 222. N 2. P. 234–245. https://www.jstor.org/stable/23389039E
- Sjostrom E. Wood Chemistry: Fundamentals and Applications. 2nd Ed. New York: Academic, 2013. P. 293.
- Fergus B., Goring A. The topochemistry of delignification in kraft and neutral sulphite pulping of birch wood // Pulp Paper Mag. Can. 1969. P. 65–73.
- Chang H., Sarkanen K. Species variation in lignin. Effect of species on the rate of kraft delignification // Tappi. 1973. V. 56. N 3. P. 132–134.
- Ibarra D., Chavez M. Rencoret J., Rio D., Gutierrez A., Romero J., Camarero S., Martinez M., Jimenez-Barbero J., Martinez A. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: A two dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study // J. Agr. Food Chem. 2007. V. 55. P. 3477–3490.
- Saka S. Chemical composition and distrubution // Wood and Cellulosic Chemistry. 2nd Ed. New York: Marcel Dekker, 2000. P. 69–71.
- Reza M., Kontturi E., Jaaskelainen A.S., Vuorinen T., Ruokolainen J. Transmission electron microscopy for wood and fiber analysis — A review // BioResources. 2015. V. 10. N 3. P. 6230–6261. https://doi.org/10.15376/biores.10.3
- Pecha M.B., Garcia-Perez M. Chapter 29 — Pyrolysis of lignocellulosic biomass: Oil, char, and gas // Renewable Resources and Enabling Sciences Center. 2020. P. 581–619. https://doi.org/10.1016/B978-0-12-815497-7.00029-4
- Pattiya A. 1 — Fast pyrolysis // Direct Thermochemical Liquefaction for Energy Applications. 2018. P. 3–28. https://doi.org/10.1016/B978-0-08-101029-7.00001-1
- Lehr M., Miltner M., Friedl A. Removal of wood extractives as pulp (pre-) treatment: A technological review // SN Appl. Sci. 2021. V. 3. P. 886. https://doi.org/10.1007/s42452-021-04873-1
- Breuil C., Iverson S., Gao Y. Fungal treatment of wood chips to remove extractives / Eds R. A. Young, M. Akhtar. Environmentally friendly technologies for the pulp and paper industry. New York: Wiley, 1998.
- Garcia V. B., Parra A. C., Prieto Ruiz J. A., Corral-Rivas J. J., Diaz J. C. H. Chemistry of plant biomass upon yield during torrefaction: A review // Rev. Mex. de Cienc. Forestales. 2016. V. 7. N 38. P. 5–24.
- Mohan D., Pittman C. U., Steele P. H. Pyrolysis of wood/biomass for bio-oil: A critical review // Energy & Fuels. 2006. 20. N 3. P. 848–889. https://doi.org/10.1021/ef0502397
- Kim Y. H., Lee S. M., Lee H. W., Lee J. W. Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera) // Bioresour. Technol. 2012. V. 116. P. 120–125. https://doi.org/10.1016/j.biortech.2012.04.033
- Rumi S. S., Liyanage S., Shamshina J. L., Abidi N. Effect of microwave plasma pre-treatment on cotton cellulose dissolution // Molecules. 2022. V. 27. P. 7007. https://doi.org/10.3390/molecules27207007
- Zhang Q., Wei F. Advanced Hierarchical Nanostructured Materials. New Jersey: John Wiley & Sons, 2014.
- Fang G., Chen H. G., Chen A. Q., Mao K. W., Wang Q. An efficient method of bio-chemical combined treatment for obtaining high-quality hemp fiber // BioResources. 2017. V. 12. P. 1566–1578. https://doi.org/10.15376/biores.12.1.1566-1578
- Blanco A., Monte M. C., Campano C., Balea A., Merayo N., Negro C. Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC) // Ed. Ch. M. Hussain. Micro and Nano Technologies. Handbook of Nanomaterials for Industrial Applications. Elsevier, 2018. P. 74–126. https://doi.org/10.1016/B978-0-12-813351-4.00005-5
- Смолин А. С. Химическая переработка древесины // ИВУЗ. Лесн. журн. 2011. № 3. https://lesnoizhurnal.ru/upload/iblock/4ad/tiuj1.pdf
- Sandberg C., Ferritsius O., Ferritsius R. Energy efficiency in mechanical pulping — definitions and considerations // Nord. Pulp Pap. Res. J. 2021. V. 36. N 3. P. 425–434. https://doi.org/10.1515/npprj-2021-0013
- Iram A., Berenjian A., Demirci A. A review on the utilization of lignin as a fermentation substrate to produce lignin-modifying enzymes and other value-added products // Molecules. 2021. V. 26. P. 2960. https://doi.org/10.3390/molecules26102960
- Sandberg C., Hill J., Jackson M. On the development of the refiner mechanical pulping process — A review // Nord. Pulp Pap. Res. J. 2020. V. 35. N 1. P. 1–17. https://doi.org/10.1515/npprj-2019-0083
- Sundholm J. Mechanical Pulping (Papermaking Science and Technology). Helsinki: Fapet Oy, 1999. P. 428.
- Schneider T., Behn C., Windeisen-Holzhauser E., Roffael E. Influence of thermo-mechanical and chemo-thermo-mechanical pulping on the properties of oak fibres // Eur. J. Wood Prod. 2019. V. 77. P. 229–234. https://doi.org/10.1007/s00107-018-1380-2
- Sixta H. Handbook of pulp. Lenzig: Willey-VCH Verlog GmbH and Co, 2006. V. 1.
- Mboowa D. A review of the traditional pulping methods and the recent improvements in the pulping processes // Biomass Conv. Bioref. 2021. https://doi.org/10.1007/s13399-020-01243-6
- Das T. K., Houtman C. Evaluating chemical-, mechanical-, and bio-pulping processes and their sustainability characterization using life-cycle assessment // Environ. Prog. 2004. V. 23. P. 347–357. https://doi.org/10.1002/ep.10054
- Wallmo H., Theliander H., Jönsson A. S., Wallberg O., Lindgren K. The influence of hemicelluloses during the precipitation of lignin in kraft black liquor // Nord. Pulp Pap. Res. J. 2009. V. 24. P. 165–171. https://doi.org/10.3183/NPPRJ-2009-24-02-p165-171
- Tran H., Vakkilainnen E. K. The Kraft chemical recovery process // TAPPI Kraft Recover Course. 2012. P. 1–8.
- Sjöström E. Wood Chemistry: Fundamentals and Applications. New York: Acad. Press, 1993.
- Casey J. P. Pulp and Paper Chemistry and Chemical Technology. V. I. New Jersey: Wiley Intersci. Publ., 1980.
- Kumar A., Gautam A., Dutt D. Bio-pulping: An energy saving and environment-friendly approach // Phys. Sci. Rev. 2020. V. 5. N 10. P. 20190043. https://doi.org/10.1515/psr-2019-0043
- Yadav R. D., Chaudhry S., Dhiman S. S. Biopulping and its potential to reduce effluent loads from bleaching of hardwood kraft pulp // BioResources. 2010. V. 5. P. 159–71.
- Fukuzumi T. Biological pulping: Fundamental principles and technological problems // Japan Tappi J. 1980. V. 34. N 12. P. 761–768. https://doi.org/10.2524/jtappij.34.12_761
- Chaurasia S. K., Mervana P. N., Singh S., Naithani S. Biological pretreatment of lignocellulosic material for biopulping: A review // J. Non-Timber Forest Prod. 2016. V. 23. N 1. P. 1–12. https://doi.org/10.54207/bsmps2000-2016-MIR5P1
- Quintana E., Valls C., Vidal T., Roncero M. B. An enzymecatalysed bleaching treatment to meet dissolving pulp characteristics for cellulose derivatives applications // Bioresour. Technol. 2013. V. 148. P. 1–8. https://doi.org/10.1016/j.biortech.2013.08.104
- Yuan Z., Kapu N. S., Beatson R., Chang X. F., Martinez D. M. Effect of alkaline pre-extraction of hemicelluloses and silica on kraft pulping of bamboo (Neosinocalamus affinis Keng) // Ind. Crops Prod. 2016. V. 91. P. 66–75. https://doi.org/10.1016/j.indcrop.2016.06.019
- Jun A., Tschirner U. W., Tauer Z. Hemicellulose extraction from aspen chips prior to kraft pulping utilizing kraft white liquor// Biomass Bioenergy. 2012. V. 37. P. 229–236. https://doi.org/10.1016/j.biombioe.2011.12.008.
- Krässig H. A. Cellulose — Structure, Accessibility and Reactivity // Polymer Monographs. 1996. V. 11.
- Samuelsson O. Influence of the properties of cellulose on filtration of viscose // Svensk Papperstidning. 1948. V. 15. P. 331–335.
- Медведева Е. Н., Неверова Н. А., Бабкин В. А., Хинды С. О., Фарков П. М. Влияние хелатирования сульфатной целлюлозы на ее отбелку с использованием 1,10-фенантролина // Химия раст. сырья. 2001. № 1. С 49–58.
- Sixta H., Harms H., Dapia S., Parajo J.C., Puls J., Saake B., Fink H.-P., Röder T. Evaluation of new organosolv dissolving pulps. Part I: Preparation, analytical characterization and viscose processability // Cellulose. 2004. V. 11. P. 73–83. https://doi.org/10.1023/B:CELL.0000014767.47330.90
- Christoffersson K. E., Sjöström M., Edlund U., Lindgren Å., Dolk M. Reactivity of dissolving pulp: Characterisation using chemical properties, NMR spectroscopy and multivariate data analysis // Cellulose. 2002. V. 9. P. 159–170. https://doi.org/10.1023/A:1020108125490
- Chen C., Duan C., Li J., Liu Y., Ma X., Zheng L., Stavik J., Ni Y. Cellulose (dissolving pulp) manufacturing processes and properties: A mini-review // BioRes. 2016. V. 11. N 2. P. 5553–5564.
- Rojas O. J., Hubbe M. A. The dispersion science of papermaking // J. Dispersion Sci. Technol. 2005. V. 25. N 6. P. 713–732. https://doi.org/10.1081/DIS-200035485
- Francolini I., Galantini L., Rea F., Di Cosimo C., Di Cosimo P. Polymeric wet-strength agents in the paper industry: An overview of mechanisms and current challenges // Int. J. Mol. Sci. 2023. V. 24. P. 9268. https://doi.org/10.3390/ijms24119268
- Иванов С. Н. Технология бумаги. М.: Школа бумаги, 2006. С. 696.
- Слаутин Д. В., Теплоухова М. В., Андраковски Р. Э. Повышение прочности бумаги, изготовленной из макулатурной массы // Вестн. ПНИПУ. 2018. № 1. С. 113–135. https://doi.org/10.15593/2224-9400/2018.1.10
- Pulping Chemistry and Technology. V. 2 / Eds M. Ek, G. Gellerstedt, G. Henriksson. Berlin; New York: De Gruyter, 2009. https://doi.org/10.1515/9783110213423
- Handbook of Paperand Board / Ed. by H. Holik. Weinheim: John Wiley & Sons, Inc., 2006.
- Vuohelainen R., Luukkala M. A Noncontacting Method for Measuring Paper Sheet Grammage and Thickness Using Acoustic Tone Bursts / Eds D. O. Thompson, D. E. Chimenti. Review of Progress in Quantitative Nondestructive Evaluation. Review of Progress in Quantitative Nondestructive Evaluation. A. Springer, Boston, MA., 1999. V. 18. https://doi.org/10.1007/978-1-4615-4791-4_283
- Lahti J., Dauer M., Keller D.S., Hirn U. Identifying the weak spots in packaging paper: Local variations in grammage, fiber orientation and density and the resulting local strain and failure under load // Cellulose. 2020. V. 27. P. 10327–10343. https://doi.org/10.1007/s10570-020-03493-z
- Korteoja M. J., Lukkarinen A., Kaski K., Gunderson D. E., Dahlke J. L., Niskanen K. J. Local strain fields in paper // Tappi J. 1996. V. 79. N 4. P. 217–224.
- Alava M., Niskanen K. In-plane tensile properties // Papermaking science and technology. 2nd Ed. Chap. 5. Finnish Paper Engineersʹ Association, Helsinki, 2008. V. 16. P. 181–228.
- Levlin J. E., Söderhjelm L. Papermaking science and technology. Book 17. Pulp and paper testing. Helsinki: Fapet Oy, 1999. P. 287.
- Ion R.-M., Grigorescu R. M., Iancu L., David M. E., Cirstoiu A., Paraschiv G. I., Geba M. Morphological and mechanical properties of book cellulose-based paper (XXth Century) treated with hydroxyapatite nanoparticles // Heritage. 2022. V. 5. P. 2241–2257. https://doi.org/10.3390/heritage5030117.
- Lewin M. The yellowing of cotton cellulose: Part III: On the mechanism of yellowing upon aging and alkaline extraction // Textile Res. J. 1965. V. 35. N 11. P. 979–986. https://doi.org/10.1177/004051756503501103.
- Ahn K., Zaccaron S., Zwirchmayr N. S., Hettegger H., Bacher M., Potthast A., Henniges U., Rosenau T., Hofinger A., Hosoya T. Yellowing and brightness reversion of celluloses: CO or COOH, who is the culprit? // Cellulose. 2019. V. 26. P. 429–444. https://doi.org/10.1007/s10570-018-2200-x
- Malachowska E., Dubowik M., Lipkiewicz A., Przybysz K., Przybysz P. Analysis of cellulose pulp characteristics and processing parameters for efficient paper production // Sustainability. 2020. V. 12. P. 7219. https://doi.org/10.3390/su12177219
- Potthast A., Rohrling J., Rosenau T., Borgards A., Sixta H., Kosma P. A Novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes // Biomacromolecules. 2003. V. 4. N 3. P. 743–749. https://doi.org/10.1021/bm025759c
- Stenius P. Papermaking science and technology. Book 3. Forest products chemistry. Helsinki: Fapet Oy, 2000. P. 350.
- Parkas J., Paulsson M. Review: Light-induced yellowing of lignocellulosic pulps — Mechanisms and preventive methods // BioResources. 2012. V. 7. N 4. P. 5995–6040.
- Radivojević V. M., Rupčić S., Srnović M., Benšić G. Measuring the dielectric constant of paper using a parallel plate capacitor // IJECES. 2018. V. 9. N 1. P. 1–10. https://doi.org/10.32985/ijeces.9.1.1
- Back E. L. The relative moisture sensitivity of compression as compared to tensile strength // Papermaking Raw Materials, Trans. of the VIIIth Fund. Res. Symp. Oxford, 1985 (V. Punton, Ed.). P. 497–509. FRC, Manchester, 2018. https://doi.org/10.15376/frc.1985.2.497
- Rance H. F. The Structure and Physical Properties of Paper. Nederland: Elsevier Sci., 1982. P. 288.
- Handbook of Physical Testing of Paper. 2nd Ed. / Eds R. E. Mark, C. C. Habeger, Jr., J. Borch, M. B. Lyne. Marcel Dekker, Inc., New York: 2002. P. 1040.
- Makarov I. S., Golova L. K., Smyslov A. G., Vinogradov M. I., Palchikova E. E., Legkov S. A. Flax noils as a source of cellulose for the production of Lyocell fibers // Fibers. 2022. V. 10. N 5. P. 45. https://doi.org/10.3390/fib10050045
- Севастьянова Ю. В., Молодцова М. А., Иванов К. А., Татарский К. О. Получение Nа-бисульфитной растворимой целлюлозы (DWP) из хвойных пород древесины // Новейшие достижения в области инновационного развития целлюлозно-бумажной промышленности: технология, оборудование, химия: материалы науч.-техн. конф., 4–6 апреля, Минск, Белорусский государственный технологический университет. Минск: БГТУ, 2017. С. 69–72.
- Yu Y., Tyrikos-Ergas T., Zhu Y., Fittolani G., Bordoni V., Singhal A., Fair R.J., Grafmüller A., Seeberger P.H., Delbianco M. Systematic hydrogen-bond manipulations to establish polysaccharide structure–property correlations // Angew. Chem. 2019. V. 58. N 37. P. 13127–13132. https://doi.org/10.1002/anie.201906577
- Wohlert M., Benselfelt T., Wagberg L., Furo I., Berglund L. A., Wohlert J. Cellulose and the role of hydrogen bonds: Not in charge of everything // Cellulose. 2022. V. 29. P. 1–23. https://doi.org/10.1007/s10570-021-04325-4
- Dauenhauer P., Krumm C., Pfaendtner J. Millisecond pulsed films unify the mechanisms of cellulose fragmentation // Chem. Mater. 2016. V. 28. N 1. P. 0001. https://doi.org/10.1021/acs.chemmater.6b00580
- Бочек А. М. Водородные связи в целлюлозе и их влияние на ее растворимость в водных и неводных средах (обзор) // ЖПХ. 2003. Т. 76. № 11. С. 1761–1770 [Bochek A. M. Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents // Russ. J. Appl. Chem. 2003. V. 76. N 11. P. 1711–1719. https://doi.org/10.1023/B:RJAC.0000018669.88546.56].
- Иовлева М. М. О новых волокнах, получаемых из систем целлюлоза–водный раствор гидроксида натрия // Хим. волокна. 1996. № 1. C. 11–14.
- Lu X., Shen X. Solubility of bacteria cellulose in zinc chloride aqueous solutions // Carbohydrate Polym. 2011. V. 86. N 1. P. 239–244. https://doi.org/10.1016/j.carbpol.2011.04.042
- Liu S., Zhang L. Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution // Cellulose. 2009. V. 16. N 2. P. 189–198. https://doi.org/10.1007/s10570-008-9268-7
- Yudianti R., Syampurwadi A., Onggo H., Karina M., Uyama H., Azuma J. Properties of bacterial cellulose transparent film regenerated from dimethylacetamide–LiCl solution // Polym. Adv. Technol. 2016. V. 27. N 8. P. 1102–1107. https://doi.org/10.1002/pat.3782
- Gericke M., Schlufter K., Liebert T., Heinze T., Budtova T. Rheological properties of cellulose/ionic liquid solutions: From dilute to concentrated states // Biomacromolecules. 2009. V. 10. N 5. P. 1188–1194. https://doi.org/10.1021/bm801430x
- Pat. US 3447939 (publ. 1969). Compounds dissolved in cyclic amine oxides.
- Makarov I. S., Golova L. K., Bondarenko G. N., Anokhina T. S., Dmitrieva E. S., Levin I. S., Makhatova V. E., Galimova N. Z., Shambilova G. K. Structure, morphology, and permeability of cellulose films // Membranes. 2022. V. 12. P. 297. https://doi.org/10.3390/membranes12030297
- Sawiak M., Souto B. A., Lawson L., Lo J., Dolez P. I. Recovery of N-methylmorpholine N-oxide (NMMO) in Lyocell fibre manufacturing process // Fibers. 2025. V. 13. N 1. P. 3. https://doi.org/10.3390/fib13010003
- Higashi T., Toyama T., Sakurai H., Nakaza M., Omae K., Nakadate T., Yamaguchi N. Cross-sectional study of respiratory symptoms and pulmonary functions in rayon textile workers with special reference to exposure // Ind. Health. 1983. V. 21. N 4. P. 281–292.
- Zhang S., Chen C., Duan C., Hu H., Li H., Li J., Liu Y., Ma X., Stavik J., Ni Y. Regenerated cellulose by the Lyocell process, a brief review of the process and properties // BioRes. 2018. V. 13. N 2. P. 4577–4592.
- Yuan W., Wu K., Liu N., Zhang Y., Wang H. Cellulose acetate fibers with improved mechanical strength prepared with aqueous NMMO as solvent // Cellulose. 2018. V. 25. N 5. P. 6395–6404. https://doi.org/10.1007/s10570-018-2032-8
- Xiwen W., Jian H., Jin L. Preparation Ultra-fine fibrillated Lyocell fiber and its application in battery separator // Int. J. Electrochem. Sci. 2011. V. 6. N 10. P. 4999–5004.
- Song H., Yang J., Yang Y., Yang Q., Hu J. Characterization of cellulose-nanofiber-modified fibrillated Lyocell fiber separator // BioResources. 2022. V. 17. N 3. P. 4689–4704.
- Pat. CN 108172419 A (publ. 2018). A kind of enhanced super electrolytic capacitor diaphragm paper and preparation method thereof.
- Lin K.-y., An X.-y., Liu H.-b. Application of nano-cellulose in pulp and paper industry // China Pulp & Paper. 2018. V. 37. N 1. P. 60–68. https://10.11980/j.issn.0254-508X.2018.01.010
- Nazari B., Kumar V., Bousfield D. W., Toivakka M. Rheology of cellulose nanofibers suspensions: Boundary driven flow // J. Rheology. 2016. V. 60. N 6. P. 1151–1159. https://doi.org/10.1122/1.4960336
- Guimond R., Chabot B., Law K. N., Daneault C. The use of cellulose nano-fibres in papermaking // Pulp & Paper Sci. 2010. V. 36. N 36. P. 55–61.
- Sang X., Qin C., Tong Z., Kong S., Jia Zh., Wan G., Liu X. Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system // Cellulose. 2017. V. 24. P. 2415–2425. https://doi.org/10.1007/s10570-017-1279-9
- Pat. CN 108221487 A (publ. 2020). A kind of low internal resistance super electrolytic capacitor paper and preparation method thereof.
- Shan H.-C., Wang Y., Long Jin., Hu J. Influence of fibrillation of tencel fiber on absorption performance and pore size of paper // Paper Sci. & Technol. 2017. V. 36. N 1. P. 12–16.
- Pat. CN 101696558 A (publ. 2011). Super electrolytic capacitor paper.
- Pat. CN 104294711 A (publ. 2016). Method for preparing insulation paper containing tencel fibers.
- Pat. CN 104882280 A (publ. 2015). High specific volume electrolytic capacitor roll core isolation assembling method.
- Pat. CN 105887553 A (publ. 2016). Supercapacitor dielectric absorption material and production method thereof.
- Pat. EP 0572921 A1 (publ. 1996). Separator for alkaline batteries.
- Pat. JP H10504858 A (publ. 1998). Lyocell fiber and method for producing the same.
- Pat. EP 2842182 A1 (publ. 2015). Battery separator.
- Макаров И. С., Бондаренко Г. Н., Кузнецова Л. К. Гемицеллюлоза в процессе получения целлюлозных волокон и мембран // Физика волокнистых материалов: структура, свойства, наукоемкие технологии и материалы (SMARTEX). 2016. Т. 1. С. 142–149.
- Yang G., Zhou Y., Zhang H., Wang S., Yao X., Shao H. Preparation and characterization of dissolving pulp and Lyocell fibers from corncob // Cellulose. 2023. V. 30. P. 4841–4853. https://doi.org/10.1007/s10570-023-05179-8
- Yuan J., Wang T., Huang X., Wei W. Dispersion and beating of bacterial cellulose and their influence on paper properties // BioResources. 2016. V. 11. P. 9290-9301.
- Пат. RU 2418124 C1 (опубл. 2011). Способ изготовления бумаги, устойчивой к загрязнению, и бумага, устойчивая к загрязнению.
- Pat. WO 2008097314 A1 (publ. 2008). Antimicrobial currency, material and method.
- Krysztof M., Olejnik K., Kulpinski P., Stanislawska A., Khadzhynova S. Regenerated cellulose from N-methylmorpholine N-oxide solutions as a coating agent for paper materials // Cellulose. 2018. V. 25. P. 3595–3607. https://doi.org/10.1007/s10570-018-1799-y
- Pat. US 3447956 A (publ. 1969). Process for strengthening swellable fibrous material with an amine oxide and the resulting material.
- Pat. JP H09256298 A (publ. 1997). Production of translucent paper and translucent paper made thereby.
- Khomutinnikov N. V., Govyazin I. O., Ivanov G. E., Fedorova E. M., Makarov I. S., Vinogradov M. I., Kulichikhin V. G. Experimental study on the manufacturing of functional paper with modified by N-methylmorpholine-N-oxide surfaces // Polymers. 2023. V. 15. P. 692. https://doi.org/10.3390/polym15030692
- Pat. CA 2891332 C (publ. 2014). Methods of making single-layer lithium ion battery separators having nanofiber and microfiber components.
- Pat. US 20210111464 A1 (publ. 2020). Methods of manufacturing thin, high density nonwoven separators for energy storage devices.
- Wang Y., Long J., Hu J., Sun Zh., Meng L. Polyvinyl alcohol /Lyocell dual-layer paper-based separator for primary zinc-air batteries // J. Power Sources. 2020. V. 453. P. 227853. https://doi.org/10.1016/j.jpowsour.2020.227853
- Pat. JP 2023549035 A (publ. 2023). Separator for electrochemical devices using cellulose fiber.
- Pat. WO 2014127828 A1 (publ. 2013). Battery separator.
- Pat. EP 0572921 A1 (publ. 1993). Separator for alkaline batteries.
- Pat. US 20060014080 A1 (publ. 2005). Separator paper for alkaline battery and the alkaline battery.
- Pat. WO 1997037392 A1 (publ. 1997). Cellulosic battery separators.
- Jung J. Y., Lee Y. S. Electrochemical properties of KOH-activated Lyocell-based carbon fibers for EDLCs // Carbon Lett. 2018. V. 27. P. 112–116. https://doi.org/10.5714/CL.2018.27.112
Supplementary files
