Gas sensing properties of Ti0.2V1.8CTx/V2O5 nanocomposite
- Autores: Simonenko E.P.1, Mokrushin A.S.1, Nagornov I.A.1, Sapronova V.M.1,2, Gorban Y.M.1,2, Gorobtsov P.Y.1, Simonenko T.L.1, Simonenko N.P.1, Kuznetsov N.T.1
 - 
							Afiliações: 
							
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
 - D.I. Mendeleev Russian Chemical and Technological University
 
 - Edição: Volume 69, Nº 4 (2024)
 - Páginas: 634-648
 - Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
 - URL: https://rjsvd.com/0044-457X/article/view/666588
 - DOI: https://doi.org/10.31857/S0044457X24040185
 - EDN: https://elibrary.ru/ZWWMGX
 - ID: 666588
 
Citar
Texto integral
Resumo
A method for the preparation of nanocomposite containing Ti0.2V1.8CTx MXene core and titanium-doped vanadium oxide surface layers as a result of relatively low-temperature partial oxidation of MXene multilayer - two-dimensional vanadium-titanium carbide has been developed. It is shown that during oxidation in air atmosphere of initial Ti0.2V1.8CTx at temperature 250°С, in general, the microstructure of accordion-like aggregates with some increase in porosity of their constituent layers and increase in their thickness due to the formation of V2O5 is preserved. At the same time, preservation of the MXene structure with a decrease in the interplanar spacing from 10.3 (initial powder Ti0.2V1.8CTx) to 7.3 Å was observed. Raman spectroscopy confirmed the formation of vanadium oxide. Kelvin-probe force microscopy data revealed that the formation of Ti0.2V1.8CTx/V2O5 nanocomposite results in a decrease in the work function from 4.88 (Ti0.2V1.8CTx) to 4.68 eV. The chemosensor properties towards a range of gaseous analytes (H2, CO, NH3, NO2, C6H6, C3H6O, CH4, C2H5OH and O2) have been comprehensively studied for Ti0.2V1.8CTx/V2O5 layers coated using the microplotter printing. At increased detection temperatures (125–200°С), high sensitivity to oxygen (10% O2) and NO2 (100 ppm) is observed; there are notable responses to humidity (50% RH) throughout the 25–200°С temperature range. At room temperature, good response to acetone, ethanol and ammonia is observed.
Palavras-chave
Texto integral
Sobre autores
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: ep_simonenko@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
A. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
I. Nagornov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
V. Sapronova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian Chemical and Technological University
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991; Moscow, 125047						
Yu. Gorban
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian Chemical and Technological University
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991; Moscow, 125047						
Ph. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
T. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
Bibliografia
- Kang H., Cho S., Ryu J. et al. // Adv. Funct. Mater. 2020. V. 30. № 27. https://doi.org/10.1002/adfm.202002486
 - Goschnick J. // Microelectron. Eng. 2001. V. 57–58. P. 693. https://doi.org/10.1016/S0167-9317(01)00553-6
 - Pazniak H., Plugin I.A., Loes M.J. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 4. P. 3195. https://doi.org/10.1021/acsanm.9b02223
 - Mao Z., Wang J., Gong Y. et al. // Micromachines. 2018. V. 9. № 11. P. 606. https://doi.org/10.3390/mi9110606
 - Khorramifar A., Karami H., Lvova L. et al. // Sensors. 2023. V. 23. № 12. P. 5716. https://doi.org/10.3390/s23125716
 - Persaud K., Dodd G. // Nature. 1982. V. 299. № 5881. P. 352. https://doi.org/10.1038/299352a0
 - Yang B., Myung N.V., Tran T. // Adv. Electron. Mater. 2021. V. 7. № 9. P. 2100271. https://doi.org/10.1002/aelm.202100271
 - Schroeder V., Evans E.D., Wu Y.-C.M. et al. // ACS Sensors. 2019. V. 4. № 8. P. 2101. https://doi.org/10.1021/acssensors.9b00825
 - Fedorov F.S., Simonenko N.P., Trouillet V. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 50. P. 56135. https://doi.org/10.1021/acsami.0c14055
 - Li G., Zhu X., Liu J. et al. // Chemosensors. 2023. V. 11. № 4. P. 251. https://doi.org/10.3390/chemosensors11040251
 - Germanese D., D’Acunto M., Magrini M. et al. // Sensors & Transducers. 2017. V. 215. № 8. P. 19.
 - Wilson A. // Metabolites. 2015. V. 5. № 1. P. 140. https://doi.org/10.3390/metabo5010140
 - van der Sar I.G., Wijbenga N., Nakshbandi G. et al. // Respir. Res. 2021. V. 22. № 1. P. 246. https://doi.org/10.1186/s12931-021-01835-4
 - Güntner A.T., Koren V., Chikkadi K. et al. // ACS Sensors. 2016. V. 1. № 5. P. 528. https://doi.org/10.1021/acssensors.6b00008
 - Jeong S.Y., Kim J.S., Lee J.H. // Adv. Mater. 2020. V. 32. Is. 51. https://doi.org/10.1002/adma.202002075
 - Wei Z., Xiao X., Wang J. et al. // Sensors. 2017. V. 17. № 11. P. 2500. https://doi.org/10.3390/s17112500
 - Nake A., Dubreuil B., Raynaud C. et al. // Sens. Actuators, B: Chem. 2005. V. 106. № 1. P. 36. https://doi.org/10.1016/j.snb.2004.05.034
 - Simonenko N.P., Fisenko N.A., Fedorov F.S. et al. // Sensors (Switzerland). 2022. V. 22. № 3247. P. 1. https://doi.org/10.3390/s22093473
 - Bax C., Bernasconi R., Massironi F. et al. // J. Electrochem. Soc. 2021. V. 168. № 4. P. 047513. https://doi.org/10.1149/1945-7111/abf7e7
 - Alshammari A.S., Alenezi M.R., Lai K.T. et al. // Mater. Lett. 2017. V. 189. P. 299. https://doi.org/10.1016/j.matlet.2016.11.033
 - Zhu Y., Yu L., Wu D. et al. // Sens. Actuators, A: Phys. 2021. V. 318. P. 112434. https://doi.org/10.1016/j.sna.2020.112434
 - Dai Y., Huang J., Zhang H. et al. // Sens. Actuators, B: Chem. 2019. V. 281. P. 746. https://doi.org/10.1016/j.snb.2018.11.014
 - Zazoum B., Bachri A., Nayfeh J. // Materials (Basel). 2021. V. 14. № 21. P. 6603. https://doi.org/10.3390/ma14216603
 - Li N., Jiang Y., Xiao Y. et al. // Nanoscale. 2019. V. 11. № 44. P. 21522. https://doi.org/10.1039/C9NR06751E
 - Ravi Kumar Y., Deshmukh K., Kovářík T. et al. // Coord. Chem. Rev. 2022. V. 461. P. 214502. https://doi.org/10.1016/j.ccr.2022.214502
 - Sett A., Rana T., Rajaji U. et al. // Sens. Actuators, A: Phys. 2022. V. 338. P. 113507. https://doi.org/10.1016/j.sna.2022.113507
 - Tan W.C., Ang K. // Adv. Electron. Mater. 2021. V. 7. № 7. https://doi.org/10.1002/aelm.202001071
 - Lazanas A.C., Prodromidis M.I. // Microchim. Acta. 2021. V. 188. № 1. P. 6. https://doi.org/10.1007/s00604-020-04674-0
 - Gómez I.J., Alegret N., Dominguez-Alfaro A. et al. // Chemistry (Easton). 2021. V. 3. № 4. P. 1314. https://doi.org/10.3390/chemistry3040095
 - Cao J., Chen Q., Wang X. et al. // Research. 2021. V. 2021. https://doi.org/10.34133/2021/9863038
 - Choi S.-J., Kim I.-D. // Electron. Mater. Lett. 2018. V. 14. № 3. P. 221. https://doi.org/10.1007/s13391-018-0044-z
 - Wu M., He M., Hu Q. et al. // ACS Sensors. 2019. V. 4. № 10. P. 2763. https://doi.org/10.1021/acssensors.9b01308
 - Lee E., VahidMohammadi A., Prorok B.C. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 42. P. 37184. https://doi.org/10.1021/acsami.7b11055
 - Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13. № 5. P. 850. https://doi.org/10.3390/nano13050850
 - Kim S.J., Koh H.J., Ren C.E. et al. // ACS Nano. 2018. V. 12. № 2. P. 986. ttps://doi.org/10.1021/acsnano.7b07460
 - Shuvo S.N., Ulloa Gomez A.M., Mishra A. et al. // ACS Sensors. 2020. V. 5. № 9. P. 2915. https://doi.org/10.1021/acssensors.0c01287
 - Li X., An Z., Lu Y. et al. // Adv. Mater. Technol. 2022. V. 7. № 3. P. 2100872. https://doi.org/10.1002/admt.202100872
 - Majhi S.M., Ali A., Greish Y.E. et al. // ACS Appl. Electron. Mater. 2022. V. 4. № 8. P. 4094. https://doi.org/10.1021/acsaelm.2c00717
 - Sun Q., Wang J., Wang X. et al. // Nanoscale. 2020. V. 12. № 32. P. 16987. https://doi.org/10.1039/C9NR08350B
 - Wu M., An Y., Yang R. et al. // ACS Appl. Nano Mater. 2021. V. 4. № 6. P. 6257. https://doi.org/10.1021/acsanm.1c01059
 - Majhi S.M., Ali A., Greish Y.E. et al. // Sci. Rep. 2023. V. 13. № 1. P. 3114. https://doi.org/10.1038/s41598-023-30002-6
 - Guo L., Han H., Li Y. et al. // Appl. Phys. Lett. 2023. V. 123. № 1. P. 013901. https://doi.org/10.1063/5.0156402
 - Zhang Y., Jiang Y., Duan Z. et al. // Sens. Actuators, B: Chem. 2021. V. 344. № 2. P. 130150. https://doi.org/10.1016/j.snb.2021.130150
 - Lee E., VahidMohammadi A., Yoon Y.S. et al. // ACS Sensors. 2019. V. 4. № 6. P. 1603. https://doi.org/10.1021/acssensors.9b00303
 - Wu M., An Y., Yang R. et al. // ACS Appl. Nano Mater. 2021. V. 4. № 6. P. 6257. https://doi.org/10.1021/acsanm.1c01059
 - Liu P., Xu H., Wang X. et al. // J. Collоid Interface Sci. 2024. V. 655. P. 364. https://doi.org/10.1016/j.jcis.2023.11.027
 - Chen K., Guan Y., Tan L. et al. // Appl. Surf. Sci. 2023. V. 617. P. 156575. https://doi.org/10.1016/j.apsusc.2023.156575
 - Feng K., Li Y., Xu C. et al. // Electrochim. Acta. 2023. V. 444. P. 142022. https://doi.org/10.1016/j.electacta.2023.142022
 - Zhao W., Yang Y., Deng Q. et al. // Adv. Funct. Mater. 2023. V. 33. № 5. https://doi.org/10.1002/adfm.202210037
 - Zhang Y., Cao J., Yuan Z. et al. // Small. 2022. V. 18. № 30. P. 2202313. https://doi.org/10.1002/smll.202202313
 - Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors. 2022. V. 11. № 1. P. 7. https://doi.org/10.3390/chemosensors11010007
 - Wang X., Gong L., Li Z. et al. // J. Mater. Chem. A. 2023. V. 11. № 14. P. 7690. https://doi.org/10.1039/D2TA07917H
 - Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
 - Kuang D., Wang L., Guo X. et al. // J. Hazard. Mater. 2021. V. 416. P. 126171. https://doi.org/10.1016/j.jhazmat.2021.126171
 - Liang D., Song P., Liu M. et al. // Ceram. Int. 2022. V. 48. № 7. P. 9059. https://doi.org/10.1016/j.ceramint.2021.12.089
 - Fan C., Shi J., Zhang Y. et al. // Nanoscale. 2022. V. 14. № 9. P. 3441. https://doi.org/10.1039/D1NR06838E
 - Gasso S., Mahajan A. // ACS Sensors. 2022. V. 7. № 8. P. 2454. https://doi.org/10.1021/acssensors.2c01213
 - Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Materials (Basel). 2023. V. 16. № 13. P. 4506. https://doi.org/10.3390/ma16134506
 - Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors. 2022. V. 11. № 1. P. 7. https://doi.org/10.3390/chemosensors11010007
 - Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104. № 4. P. 1669. https://doi.org/10.1111/jace.17582
 - Roy C., Banerjee P., Bhattacharyya S. // J. Eur. Ceram. Soc. 2020. V. 40. № 3. P. 923. https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
 - Luo W., Liu Y., Wang C. et al. // J. Mater. Chem. C. 2021. V. 9. № 24. P. 7697. https://doi.org/10.1039/D1TC01338F
 - Liu A., Yang Q., Ren X. et al. // Ceram. Int. 2020. V. 46. № 5. P. 6934. https://doi.org/10.1016/j.ceramint.2019.11.008
 - Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
 - Matthews K., Zhang T., Shuck C.E. et al. // Chem. Mater. 2022. V. 34. № 2. P. 499. https://doi.org/10.1021/acs.chemmater.1c03508
 - Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Biosensors. 2023. V. 13. № 4. P. 445. https://doi.org/10.3390/bios13040445
 - Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2099. https://doi.org/10.1134/S0036023622601520
 - Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
 - Wyckoff R.W.G. // Cryst. Struct. 1963. V. 1. P. 85.
 - Etzkorn J., Ade M., Hillebrecht H. // Inorg. Chem. 2007. V. 46. № 18. P. 7646. https://doi.org/10.1021/ic700382y
 - Yusupov K., Björk J., Rosen J. // Nanoscale Adv. 2023. V. 5. № 15. P. 3976. https://doi.org/10.1039/D2NA00830K
 - Hart J.L., Hantanasirisakul K., Lang A.C. et al. // Nat. Commun. 2019. V. 10. № 1. P. 522. https://doi.org/10.1038/s41467-018-08169-8
 - Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
 - Evans H.T., Mrose M.E. // Am. Mineral. 1955. V. 40. № 9–10. P. 861.
 - Enjalbert R., Galy J. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1986. V. 42. № 11. P. 1467. https://doi.org/10.1107/S0108270186091825
 - Pauling L., Sturdivant J.H. // Z. Krist. - Cryst. Mater. 1928. V. 68. № 1–6. P. 239. https://doi.org/10.1524/zkri.1928.68.1.239
 - Grey I.E., Li C., Madsen I.C. et al. // Mater. Res. Bull. 1988. V. 23. № 5. P. 743. https://doi.org/10.1016/0025-5408(88)90040-2
 - Meagher E.P., Lager G.A. // Can. Mineral. 1979. V. 17. P. 77.
 - Kim Y., Gkountaras A., Chaix-Pluchery O. et al. // RSC Adv. 2020. V. 10. № 42. P. 25266. https://doi.org/10.1039/d0ra00842g
 - Champagne A., Shi L., Ouisse T. et al. // Phys. Rev. B. 2018. V. 97. № 11. P. 1. https://doi.org/10.1103/PhysRevB.97.115439
 - Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
 - Frank O., Zukalova M., Laskova B. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. № 42. P. 14567. https://doi.org/10.1039/c2cp42763j
 - Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectrosc. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
 - Tolosa A., Fleischmann S., Grobelsek I. et al. // ACS Appl. Energy Mater. 2018. V. 1. № 8. P. 3790. https://doi.org/10.1021/acsaem.8b00572
 - Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1850. https://doi.org/10.1134/S0036023622601222
 - Gorobtsov P.Y., Mokrushin A.S., Simonenko T.L. et al. // Materials. 2022. V. 15. № 7837. P. 1. https://doi.org/https://doi.org/10.3390/ma15217837
 - Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. № 3. https://doi.org/10.1063/1.3611392
 - Gorobtsov P.Y., Simonenko T.L., Simonenko N.P. et al. // Colloids Interfaces. 2023. V. 7. № 1. P. 20. https://doi.org/10.3390/colloids7010020
 - Mansfeldova V., Zlamalova M., Tarabkova H. et al. // J. Phys. Chem. C. 2021. V. 125. № 3. P. 1902. https://doi.org/10.1021/acs.jpcc.0c10519
 
Arquivos suplementares
				
			
						
						
					
						
						
									











