Synthesis and Physicochemical Properties of Magnetic Fе3O4 Particles Doped with Gd(III)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Magnetic Fe3O4 nanoparticles were synthesized by alkaline precipitation of aqueous solutions of divalent and trivalent iron salts. Synthesis of Fe3−xGdxO4 nanoparticles (x = 0.05; 0.1) was performed by adding a calculated amount of Gd(NO3)3 6H2O to the initial solution of iron salt mixture. The phase composition and magnetic properties of the synthesized powders were investigated by X-ray phase analysis, Mössbauer spectroscopy on 57Fe isotope and magnetometry at temperatures T = 7, 20 and 300 K. The investigations confirmed the formation of nanoparticles of non-stehiometric Fe3−δO4 magnetite, as well as magnetite doped with Gd3+ ions. The correlation between the average diameter of nanoparticles of the initial Fe3−δO4 powder and doped Fe3−xGdxO4 powder and the salt used in the synthesis, as well as the concentration of Gd (x), respectively, was revealed.

全文:

受限制的访问

作者简介

E. Mitskevich

Belarusian State University

编辑信件的主要联系方式.
Email: fcfvvv12@gmail.com
白俄罗斯, 4, Nezavisimost Ave., Minsk, 220030

M. Degtyarik

Research Institute for Physical Chemical Problems of the Belarusian State University

Email: fcfvvv12@gmail.com
白俄罗斯, 14, Leningradskaya St., Minsk, 220030

A. Kharchеnkо

Research Institute of Nuclear Problems of the Belarusian State University

Email: fcfvvv12@gmail.com
白俄罗斯, 11, Bobruyskaya St., Minsk, 220030

М. Bushinsky

Practical Center of the National Academy of Sciences of Belarus for Materials Science

Email: fcfvvv12@gmail.com
白俄罗斯, 19, P. Brovka St., Minsk, 220072

J. Fedotova

Research Institute of Nuclear Problems of the Belarusian State University

Email: fcfvvv12@gmail.com
白俄罗斯, 11, Bobruyskaya St., Minsk, 220030

参考

  1. Yasemian A.R., Almasi Kashi M., Ramazani A. // Mater. Chem. Phys. 2019. V. 230. P. 9. https://doi.org/10.1016/j.matchemphys.2019.03.032
  2. Koli R.R., Phadatare M.R., Sinha B.B. et al. // J. Taiwan Inst. Chem. Eng. 2019. V. 95. P. 357. https://doi.org/10.1016/j.jtice.2018.07.039
  3. Sharma K.S., Ningthoujam R.S., Dubey A.K. et al. // Sci. Rep. 2018. V. 8. № 1. P. 14766. https://doi.org/10.1038/s41598-018-32934-w
  4. Budnyk A.P., Lastovina T.A., Bugaev A.L. et al. // J. Spectr. 2018. P. 1412563. https://doi.org/10.1155/2018/1412563
  5. Araújo R., Castro A.C.M., Fiúza A. // Mater. Today Proc. 2015. V. 2. P. 315. https://doi.org/10.1016/j.matpr.2015.04.055
  6. Jiang B., Lian L., Xing Y. et al. // Environ. Sci. Pollut. Res. 2018. V. 25. P. 30863. https://doi.org/10.1007/s11356-018-3095-7
  7. Bagbi Y., Sarswat A., Mohan D. et al. // Sci. Rep. 2017. V. 7. №1. P. 7672. https://doi.org/10.1038/s41598-017-03380-x
  8. Li H.Q., Liu F., Zhang B.J. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1681. https://doi.org/10.1134/S0036023623601216
  9. Mojtahedi M.M., Abaee M.S., Rajabi A. et al. // J. Mol. Catal. Chem. 2012. V. 361. P. 68. https://doi.org/10.1016/j.molcata.2012.05.004
  10. Zhang H., Malik V., Mallapragada S. et al. // J. Magn. Magn. Mater. 2017. V. 423. P. 386. https://doi.org/10.1016/j.jmmm.2016.10.005
  11. Jesus A.C.B., Silva T.R., Almeida R.V. et al. // Ceram. Int. 2020. V. 46. № 8. P. 11149. https://doi.org/10.1016/j.ceramint.2020.01.135
  12. Xu R., Zhang J., Liu Y. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 33. P. 36917. https://pubs.acs.org/doi/10.1021/acsami.0c09952
  13. Zhang G., Zhang L., Si Y. et al. // Chem. Eng. J. 2020. V. 388. P. 124269. https://doi.org/10.1016/j.cej.2020.124269
  14. Li J., Li X., Gong S. et al. // Nano Lett. 2020. V. 20. № 7. P. 4842. https://doi.org/10.1021/acs.nanolett.0c00817
  15. Peng H., Cui B., Wang Y. // Mater. Res. Bull. 2013. V. 48. № 5. P. 1767. https://doi.org/10.1016/j.materresbull.2013.01.001
  16. Kahil H., Faramawy A., El-Sayed H. et al. // Crystals. 2021. V. 11. № 10. P. 1153. https://doi.org/10.3390/cryst11101153
  17. Palihawadana-Arachchige M., Naik V.M., Vaishnava P.P. et al. / Nanostructured Materials – Fabrication to Applications. BoD: Books on Demand (2017). https://doi.org/10.5772/intechopen.68219
  18. Jain R., Luthra V., Arora M. et al. // Adv. Sci. Eng. Med. 2019. V. 11. № 1–2. P. 88. https://doi.org/10.1166/asem.2019.2313
  19. Dhillon G., Kumar P., Sharma R. et al. // J. Mater. Sci. Mater. Electron. 2021. V. 32. № 17. P. 22387. https://doi.org/10.1007/s10854-021-06725-5
  20. Janani V., Induja S., Jaison D. et al. // Ceram. Int. 2021. V. 47. № 22. P. 31399. https://doi.org/10.1016/j.ceramint.2021.08.015
  21. Massart R. // IEEE Trans. Magn. 1981. V. 17. № 2. P. 1247. https://doi.org/10.1109/TMAG.1981.1061188
  22. Zhu N., Ji H., Yu P. et al. // Nanomaterials. 2018. V. 8. № 10. P. 810. https://doi.org/10.3390/nano8100810
  23. Lagarec K., Rancourt D.G. // Recoil-Mössbauer spectral analysis software for Windows. University of Ottawa, Ottawa, ON 43 (1998).
  24. Rancourt D.G., Ping J.Y. // Nucl. Instrum. Methods Phys. Res., Sect. B. 1991. V. 58. № 1. P. 85. https://doi.org/10.1016/0168-583X(91)95681-3
  25. Powder Diffraction File (PDF). The International Centre for Diffraction Data.
  26. Williamson G.K., Hall W.H. // Acta Metall. 1953. V. 1. № 1. P. 22. https://doi.org/10.1016/0001-6160(53)90006-6
  27. Johnson C.E., Johnson J.A., Hah H.Y. et al. // Hyperfine Interact. 2016. V. 237. P. 1. https://doi.org/10.1007/s10751-016-1277-6
  28. Kuchma E., Kubrin S., Soldatov A. // Biomedicines. 2018. V. 6. № 3. P. 78. https://doi.org/10.3390/biomedicines6030078
  29. Winsett J., Moilanen A., Paudel K. et al. // SN Appl. Sci. 2019. V. 1. Р. 1. https://doi.org/10.1007/s42452-019-1699-2
  30. Панкратов Д.А., Анучина М.М., Спиридонов Ф.М. и др. // Кристаллография. 2020. Т. 65. № 3. С. 393. https://doi.org/10.31857/S0023476120030248. Pankratov D.A., Anuchina M.M., Spiridonov F.M. et al. // Crystallogr. Rep. 2020. V. 65. № 3. P. 393. https://doi.org/10.1134/s1063774520030244
  31. Martinez-Boubeta C., Simeonidis K., Makridis A. et al. // Sci. Rep. 2013. V. 3. Р. 1652. https://doi.org/10.1038/srep01652
  32. Zhu W., Winterstein J., Maimon I. et al. // J. Phys. Chem. C. 2016. V. 120. № 27. P. 14854. https://doi.org/10.1021/acs.jpcc.6b02033
  33. Persson K. // Materials data on fe3o4 (sg: 227) by materials project. United States (2015). https://doi.org/10.17188/1194194

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of Fe3O4 (M1, M2) and Fe3-hGdxO4 samples at x = 0.05 (M3) and 0.10 (M4).

下载 (326KB)
3. Fig. 2. X-ray diffraction patterns (points) of Fe3O4 and Fe3-xGdxO4 samples at x = 0.05 and 0.1 in the angle range 38° < 2θ < 45° with approximation (solid lines); a - M1; b - M2; c - M3; d - M4.

下载 (391KB)
4. Fig. 3. Experimental (circles), approximation (red line) and noise (blue line) diffractograms of sample M1. The inset shows the experimental dependence of cos (θ) β on 4sin (θ) for the Williamson-Hall calculation.

下载 (138KB)
5. Fig. 4. Mössbauer spectra of samples M1-M4.

下载 (824KB)
6. Fig. 5. Magnetisation curves M (B) for all synthesised samples.

下载 (395KB)
7. Fig. 6. Example of M (B) curve approximation (experimental curve at T = 300 K (dots), envelope (red curve) and noise (blue curve)) by formula (4) for sample M1 (a) and enlarged fragment (b).

下载 (162KB)

版权所有 © Russian Academy of Sciences, 2025