Molecular Dynamics Investigation of the Effect of the Interface Orientation on the Intensity of Titanium Dissolution in Crystalline and Amorphous Aluminum

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The influence of the interface orientation on the intensity of dissolution of titanium in crystalline and amorphous aluminum is studied by molecular dynamics simulation. The following four orientations of the Ti–Al interface with respect to the Ti (hcp) and Al (fcc) lattices are considered: (1) (0001):(111), (2) (0001):(001), (3) (101¯0101¯0):(111), and (4) (101¯1101¯1):(001). The interface orientation is found to influence the intensity of dissolution of titanium in aluminum, which increases for the accepted designations in the order 1–2–3–4. An important phenomenon in this case turns out to be the formation of a thin (2–3 atomic planes thick) crystalline layer in aluminum, which repeats the crystal lattice of titanium, at the initial stage of dissolution. At a temperature below the melting point of aluminum, a grain boundary parallel to the interface forms behind this layer. At temperatures above the melting point of aluminum, this crystalline layer is preserved, but its thickness decreases gradually as the temperature increases. For aluminum in an amorphous state at temperatures below its melting point, the dissolution of titanium occurs at almost the same intensity as in the crystalline state of aluminum, which is explained by the formation of a similar crystalline layer in aluminum at the interface in all cases.

Авторлар туралы

G. Poletaev

Polzunov Altai State Technical University

Email: gmpoletaev@mail.ru
656038, Barnaul, Russia

Yu. Bebikhov

Mirny Polytechnic Institute, Ammosov North-Eastern Federal University

Email: gmpoletaev@mail.ru
678170, Mirny, Russia

A. Semenov

Mirny Polytechnic Institute, Ammosov North-Eastern Federal University

Email: gmpoletaev@mail.ru
678170, Mirny, Russia

A. Sitnikov

Polzunov Altai State Technical University

Хат алмасуға жауапты Автор.
Email: gmpoletaev@mail.ru
656038, Barnaul, Russia

Әдебиет тізімі

  1. Y.-W. Kim, J. Metals 46, 30 (1994).
  2. F. Appel, P. A. Beaven, and R. Wagner, Acta metall. mater. 41, 1721 (1993).
  3. J. Lapin, Proc. Metal, Tanger, Ostrava 19, 2019 (2009).
  4. T. Tetsui, Rare Metals 30, 294 (2011).
  5. T. Voisin, J.-P. Monchoux, and A. Couret, in Spark Plasma Sintering of Materials, ed. by P. Cavaliere, Springer, Cham (2019), p. 713.
  6. Q. Wu, J. Wang, Y. Gu, Y. Guo, G. Xu, and Y. Cui, J. Phase Equilib. Di us. 39, 724 (2018).
  7. N. Thiyaneshwaran, K. Sivaprasad, and B. Ravisankar, Sci. Rep. 8, 16797 (2018).
  8. H. Wu, Sh. Zhang, H. Hu, J. Li, J. Wu, Q. Li, and Zh. Wang, Intermetallics 110, 106483 (2019).
  9. J.-G. Luo, Welding J. 79, 239-s (2000).
  10. Г. М. Полетаев, ЖЭТФ 160, 527 (2021).
  11. Г. М. Полетаев, Р. Ю. Ракитин, ФТТ 64, 412 (2022).
  12. V. V. Boldyrev, K. Tkacova, J. Mater. Synt. Proc. 8, 121 (2000).
  13. V. Y. Filimonov, M. V. Loginova, S. G. Ivanov, A. A. Sitnikov, V. I. Yakovlev, A. V. Sobachkin, A. Z. Negodyaev, and A. Y. Myasnikov, Comb. Sci. Techn. 192, 457 (2020).
  14. M. V. Loginova, V. I. Yakovlev, V. Yu. Filimonov, A. A. Sitnikov, A. V. Sobachkin, S. G. Ivanov, and A. V. Gradoboev, Lett. Mater. 8, 129 (2018).
  15. R. R. Zope and Y. Mishin, Phys. Rev. B 68, 024102 (2003).
  16. Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee, Comput. Mater. Sci. 119, 1 (2016).
  17. Q.-X. Pei, M. H. Jhon, S. S. Quek, and Z. Wu, Comput. Mater. Sci. 188, 110239 (2021).
  18. C. Chen, F. Zhang, H. Xu, Z. Yang, and G. M. Poletaev, J. Mater. Sci. 57, 1833 (2022).
  19. Г. М. Полетаев, И. В. Зоря, ЖЭТФ 158, 485 (2020).
  20. Q. Bizot, O. Politano, A. A. Nepapushev, S. G. Vadchenko, A. S. Rogachev, and F. Baras, J. Appl. Phys. 127, 145304 (2020).
  21. M. I. Mendelev, F. Zhang, H. Song, Y. Sun, C. Z. Wang, and K. M. Ho, J. Chem. Phys. 148, 214705 (2018).
  22. H. Y. Zhang, F. Liu, Y. Yang, and D. Y. Sun, Sci. Rep. 7, 10241 (2017).
  23. M. I. Mendelev, M. J. Rahman, J. J. Hoyt, and M. Asta, Modell. Simul. Mater. Sci. Eng. 18, 074002 (2010).
  24. D. Y. Sun, M. Asta, and J. J. Hoyt, Phys. Rev. B. 69, 024108 (2004).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023