Experimental and theoretical study of the manifestation of the main background single- harge arid ions ArM+ in the inductively coupled plasma mass spectrometry method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Single-charge background argid ions ArH+, ArN+, ArO+ and Ar2+ create very strong spectral interference in elemental and isotope analysis by inductively coupled plasma mass spectrometry (ICP-MS). The behavior of these basic background argid ions under ICP-MS conditions is experimentally investigated depending on the high-frequency plasma power and the velocity of the argon transporting stream. Theoretically, the behavior of these argid ions has been studied by thermodynamic modeling with varying plasma temperature and velocity of the transporting argon stream. The general patterns of changes in the intensity of the main background argid ions and the efficiency of their formation with varying operational parameters of inductively coupled plasma are noted. A good coincidence of the experimental and theoretical dependences obtained has been achieved.

Full Text

Restricted Access

About the authors

A. A. Pupyshev

Ural Federal University

Author for correspondence.
Email: pupyshev@gmail.com

Department of Physical and Chemical Methods of Analysis, Institute of Physics and Technology

Russian Federation, Yekaterinburg, 620062

P. V. Zaitseva

Ural Federal University; Institute of Metallurgy, Ural Branch of Russian Academy of Sciences

Email: pupyshev@gmail.com

Department of Physical and Chemical Methods of Analysis, Institute of Physics and Technology

Russian Federation, Yekaterinburg, 620062; Yekaterinburg, 620016

M. Yu. Burylin

Kuban State University

Email: pupyshev@gmail.com

Analytical Chemistry Department, Faculty of Chemistry and High Technologies

Russian Federation, Krasnodar, 350040

A. G. Abakumov

Kuban State University

Email: pupyshev@gmail.com

Analytical Chemistry Department, Faculty of Chemistry and High Technologies

Russian Federation, Krasnodar, 350040

P. G. Abakumov

Kuban State University

Email: pupyshev@gmail.com

Analytical Chemistry Department, Faculty of Chemistry and High Technologies

Russian Federation, Krasnodar, 350040

References

  1. Пупышев А.А. Однозарядные аргидные ионы ArM+ в методе масс-спектрометрии с индуктивно связанной плазмой. Обзор // Журн. аналит. химии. 2023. Т. 78. № 9. С. 783. https://doi.org/10.31857/S0044450223090116 (Pupyshev A.A. Singly charged argide ArM+ ions in inductively coupled plasma–mass spectrometry // J. Anal. Chem. 1998. V. 53. № 9. P. 783. https://doi.org/ 10.1134/S1061934823090113)
  2. Пупышев А.А., Суриков В.Т. Масс-спектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: УрО РАН, 2006. 276 с.
  3. Пупышев А.А., Сермягин Б.А. Дискриминация ионов по массе при изотопном анализе в методе масс-спектрометрии с индуктивно связанной плазмой. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006. 132 с.
  4. Houk R.S., Praphairaksit Narong. Dissociation of polyatomic ions in the inductively coupled plasma // Spectrochim. Acta B: Atom. Spectrosc. 2001. V. 56. P. 1069. https://doi.org/10.1016/S0584-8547(01)00236-1
  5. Becker J.S., Dietze H.-J. Investigations on cluster and molecular ion formation by plasma mass spectrometry // Fresenius J. Anal. Chem. 1997. V. 359. P. 338. https://doi.org/10.1007/s002160050583
  6. Becker J.S., Seifert G., Saprykin A.I., Dietze H.-J. Mass spectrometric and theoretical investigations into the formation of argon molecular ions in plasma mass spectrometry // J. Anal. Atom. Spectrom. 1996. V. 11. P. 643. https://doi.org/10.1039/JA9961100643
  7. Fang Liu. Building a database with background equivalent concentrations to predict spectral overlaps in ICP-MS. Diss. ... doctor of philosophy. Ohio, USA: The Ohio State University, 2017. 342 p.
  8. Белов Г. В. Термодинамическое моделирование: методы, алгоритмы, программы. М.: Научный мир, 2002. 184 с.
  9. Трусов Б.Г. TERRA. Программа термодинамического расчета состава фаз произвольных гетерогенных систем, а также их термодинамических и транспортных свойств. М.: МВТУ им. Н.Э. Баумана, 2005.
  10. Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ имени Н.Э. Баумана, 2013. 96 с.
  11. Belov G.V., Iorish V.S., Yungman V.S. IVTANTHERMO for Windows – database on thermodynamic properties and related software // Calphad. 1999. V. 23. № 2. P. 173. https://doi.org/10.1016/S0364-5916(99)00023-1
  12. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические функции ArO и ArO+ // Теплофизика высоких температур. 2020. Т. 58. № 2. С. 202. https://doi.org/10.31857/S0040364420020131 (Maltsev A., Morozov I.V., Osina E.L. Thermodynamic functions of ArO and ArO+ // High Temperature. 2020. V. 58. № 2. P. 184. https://doi.org/10.1134/S0018151X20020133)
  13. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства димеров аргона и Ar2+ // Теплофизика высоких температур. 2019. Т. 57. № 1. С. 42. https://doi.org/10.1134/S0040364419010174 (Maltsev A., Morozov I.V., Osina E.L. Thermodynamic properties of Ar2+ and Ar2 argon dimers // High Temperature. 2019. V. 57. № 1. P. 37. https://doi.org/10.1134/S0018151X19010176)
  14. Maltcev M.A., Aksenova S.A., Morozov I.V., Minenkov Y., Osina E.L. Ab initio calculations of the interaction potentials and thermodynamic functions for ArN and ArN+ // J. Comput. Chem. 2023. V. 44. № 12. P. 1189. https://doi.org/10.1002/jcc.27078
  15. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства ArH+ и ArH // Теплофизика высоких температур. 2019. Т. 57. № 3. С. 367. https://doi.org/10.1134/S0040364419020121 (Maltsev A., Morozov I.V., Osina E.L. Thermodynamic properties of ArH+ and ArH // High Temperature. 2019. V. 57. № 3. P. 335. https://doi.org/10.1134/S0018151X19020123)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental change in the logarithms of the intensity I(X+) (imp/s) of the main background ions of the ICP (corrected, except for H+, for the effect of ion mass discrimination) depending on the speed of the transporting argon flow VAr (l/min) and the high-frequency plasma power W, W: 1 – 800, 2 – 1000, 3 – 1200, 4 – 1400.

Download (809KB)
3. Fig. 2. Experimental change in the logarithms of the efficiency of formation of the main background argide ions of the ICP I(ArM+)/I(M+) depending on the speed of the transporting argon flow VAr (l/min) and the high-frequency plasma power, W: 1 – 800, 2 – 1000, 3 – 1200, 4 – 1400.

Download (843KB)
4. Fig. 3. Calculated change in the logarithms of the concentration (cm–3) of the main background neutral particles n(X) and their ions n(X+) in the ICP depending on the temperature T (K) at different flow rates of the transporting argon flow VAr, l/min: (a), (b) – 0.22; (c), (d) – 1.0.

Download (378KB)
5. Fig. 4. Calculated change in the logarithms of the concentration (cm–3) of the main background neutral argon-containing particles n(X) and their ions n(X+) in the ICP depending on the temperature T(K) at different flow rates of the transporting argon flow VAr, l/min: (a), (b) – 0.22; (c), (d) – 1.0.

Download (316KB)
6. Fig. 5. Calculated change in the logarithms of the efficiency of formation of the main background argon ions n(ArM+)/n(M+) (ppm) in the ICP depending on the temperature T (K) at different flow rates of the transporting argon flow VAr, l/min: (a) – 0.22; (b) – 1.0.

Download (152KB)

Copyright (c) 2024 Russian Academy of Sciences