Taste responses of carp fishes (Cyprinidae) to carboxylic acids. 2. Feeding behavior

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The feeding behavior of the dace Leuciscus leuciscus, roach Rutilus rutilus, and common carp Cyprinus carpio was studied using orosensory testing with agar pellets containing carboxylic acids and some other substances (10−1 M). We found that feeding behavior is characterized by species-specific features and features common to these fishes. Dace and common carp in about 10% of experiments reject pellets for repeated grasps, the number of which reaches eight and six, respectively. Roach is more likely to manipulate and make repeated grasps of pellets in >45% of experiments, the maximum number of grasps being 14. The number of repeated grasps does not correlate with the palatability of pellets and does not affect the total duration of their retention in the mouth, which in dace, roach, and common carp does not exceed 1 s in 20, 30, and 60% of experiments, respectively, and positively correlates with the palatability of pellets. The maximum total duration of pellet handling reaches 55 s in dace, 109 s in roach, and 53 s in common carp. When consuming pellets, fish manipulate them many times longer than when not consuming: up to 13 times in dace, 12–15 times in common carp, and up to 20–30 times in roach. Differences in manipulation activity are less pronounced, no more than 1.5–2.0 times. Fish show stereotypic reactions when testing pellets of any taste quality, the differences between stereotypes are stronger the higher the taste attractiveness of pellets. The relationship between the manifestation of behavior during orosensory food testing and peculiarities of fish biology is discussed.

Full Text

Restricted Access

About the authors

A. O. Kasumyan

Lomonosov Moscow State University

Author for correspondence.
Email: alex_kasumyan@mail.ru
Russian Federation, Moscow

E. S. Mikhailova

Lomonosov Moscow State University

Email: alex_kasumyan@mail.ru
Russian Federation, Moscow

References

  1. Андрияшев А.П., Арнольди Л.В. 1945. О биологии питания некоторых донных рыб Черного моря // Журн. общ. биологии. Т. 6. № 1. С. 53–62.
  2. Виноградская М.И., Михайлова Е.С., Касумян А.О. 2017. Вкусовые предпочтения, оросенсорное тестирование и генерация звуков при питании жемчужного гурами Trichopodus leerii (Osphronemidae) // Вопр. ихтиологии. Т. 57. № 3. С. 324–337. https://doi.org/10.7868/S004287521703016X
  3. Касумян А.О., Исаева О.М. 2023. Вкусовые предпочтения карповых рыб (Cyprinidae). Сравнительное исследование // Там же. Т. 63. № 1. С. 81–109. https://doi.org/10.31857/S0042875223010071
  4. Касумян А.О., Михайлова Е.С. 2025. Вкусовые ответы карповых рыб (Cyprinidae) на карбоновые кислоты. 1. Вкусовые предпочтения // Там же. Т. 65. №2. С. 227–240. https://doi.org/10.31857/S0042875225020096
  5. Касумян А.О., Сидоров С.С. 2012. Влияние длительной аносмии, совмещённой со зрительной депривацией, на вкусовую чувствительность и пищевое поведение радужной форели Parasalmo (= Oncorhynchus) mykiss // Там же. Т. 52. № 1. С. 116–126.
  6. Михайлова Е.С., Касумян А.О. 2016. Оросенсорное тестирование пищи у рыб: хронология поведения // Изв. РАН. Сер. биол. № 4. С. 377–388. https://doi.org/10.7868/S000233291604010X
  7. Михайлова Е.С., Касумян А.О. 2018. Вкусовые свойства карбоновых кислот для девятииглой колюшки Pungitius pungitius // Вопр. ихтиологии. Т. 58. № 4. С. 496–502. https://doi.org/10.1134/S0042875218040124
  8. Михайлова Е.С., Касумян А.О. 2021. Вкусовые предпочтения и оросенсорное тестирование пищи у мраморного гурами Trichopodus trichopterus (Osphronemidae) // Там же. Т. 61. № 6. С. 697–712. https://doi.org/10.31857/S0042875221060126
  9. Михеев В.Н. 2006. Неоднородность среды и трофические отношения у рыб. М.: Наука, 191 с.
  10. Павлов Д.С. 1979. Биологические основы управления поведением рыб в потоке воды. М.: Наука, 319 с.
  11. Павлов Д.С., Касумян А.О. 1998. Структура пищевого поведения рыб // Вопр. ихтиологии. Т. 38. № 1. С. 123–136.
  12. Шустов Ю.А. 1995. Экологические аспекты поведения молоди лососевых рыб в речных условиях. СПб.: Наука, 161 с.
  13. Adámek Z., Sukop I. 2001. The role of supplementary feeding in food competition between common carp (Cyprinus carpio) and perch (Perca fluviatilis) in a pond culture // Krmiva. V. 43. № 4. P. 175–184.
  14. Amorim M.C.P., Hawkins A.D. 2000. Growling for food: acoustic emission during competitive feeding of the streaked gurnard // J. Fish Biol. V. 57. № 4. P. 895–907. https://doi.org/10.1006/jfbi.2000.1356
  15. Andrew J.E., Bégout Anras M.L., Kadri S. et al. 2003. Feeding responses of hatchery-reared gilthead sea bream (Sparus aurata L.) to a commercial diet and natural prey items // Mar. Freshw. Behav. Physiol. V. 36. № 2. P. 77–86. https://doi.org/10.1080/1023624031000109864
  16. Andrew J.E., Holm J., Kadri S., Huntingford F.A. 2004. The effect of competition on the feeding efficiency and feed handling behaviour in gilthead sea bream (Sparus aurata L.) held in tanks // Aquaculture. V. 232. № 1–4. P. 317–331. https://doi.org/10.1016/S0044-8486(03)00528-3
  17. Asaeda T., Priyadarshana T., Manatunge J. 2001. Effects of satiation on feeding and swimming behaviour of planktivores // Hydrobiologia. V. 443. № 1–3. P. 147–157. https://doi.org/10.1023/A:1017560524056
  18. Bateson W. 1890. The sense-organs and perceptions of fishes; with remarks on the supply of bait // J. Mar. Biol. Assoc. U.K. V. 1. № 3. P. 225–256. https://doi.org/10.1017/S0025315400072118
  19. Batty R.S., Hoyt R.D. 1995. The role of sense organs in the feeding behaviour of juvenile sole and plaice // J. Fish Biol. V. 47. № 6. P. 931–939. https://doi.org/10.1111/j.1095-8649.1995.tb06019.x
  20. Bentzen P., McPhail J.D. 1984. Ecology and evolution of sympatric sticklebacks (Gasterosteus): specialization for alternative trophic niches in the Enos Lake species pair // Can. J. Zool. V. 62. № 11. P. 2280–2286. https://doi.org/10.1139/z84-331
  21. Binoy V.V., Thomas K.J. 2008. The influence of hunger on food-stocking behaviour of climbing perch Anabas testudineus // J. Fish Biol. V. 73. № 4. P. 1053–1057. https://doi.org/10.1111/j.1095-8649.2008.01987.x
  22. Boikova O.S. 1986. Feeding of fish in Lake Glubokoe // Hydrobiologia. V. 141. № 1–2. P. 95–111. https://doi.org/10.1007/BF00007483
  23. Brawn V.M. 1969. Feeding behaviour of cod (Gadus morhua) // J. Fish. Res. Board Can. V. 26. № 3. P. 583–596. https://doi.org/10.1139/f69-054
  24. Browman H.I., Marcotte B.M. 1987. The effect of zooplankton abundance on feeding behaviour and prey size selection in Atlantic salmon, Salmo salar, alevins // Holarctic Ecol. V. 10. № 3. P. 163–170. https://doi.org/10.1111/j.1600-0587.1987.tb00754.x
  25. Brown C. 2012. Tool use in fishes // Fish Fish. V. 13. № 1. P. 105–115. https://doi.org/10.1111/j.1467-2979.2011.00451.x
  26. Callan W.T., Sanderson S.L. 2003. Feeding mechanisms in carp: crossflow filtration, palatal protrusions and flow reversals // J. Exp. Biol. V. 206. № 5. P. 883–892. https://doi.org/10.1242/jeb.00195
  27. Coyer J.A. 1995. Use of a rock as an anvil for breaking scallops by the yellowhead wrasse, Halichoeres garnoti (Labridae) // Bull. Mar. Sci. V. 57. № 2. P. 548–549.
  28. Dill L.M. 1983. Adaptive flexibility in the foraging behavior of fishes // Can. J. Fish. Aquat. Sci. V. 40. № 4. P. 398–408. https://doi.org/10.1139/f83-058
  29. Finger T.E. 1997. Feeding patterns and brain evolution in ostariophysean fishes // Acta Physiol. Scand. Suppl. V. 161. № 638. P. 59–66.
  30. Finger T.E. 2008. Sorting food from stones: the vagal taste system in goldfish, Carassius auratus // J. Comp. Physiol. A. V. 194. № 2. P. 135–143. https://doi.org/10.1007/s00359-007-0276-0
  31. Froese R., Pauly D. (eds.). 2024. FishBase. World Wide Web electronic publication (www.fishbase.org. Version 10/2024).
  32. Genner M.J., Seehausen O., Lunt D.H. et al. 2007. Age of cichlids: new dates for ancient lake fish radiations // Mol. Biol. Evol. V. 24. № 5. P. 1269–1282. https://doi.org/10.1093/molbev/msm050
  33. Giles N., Street M., Wright R.M. 1990. Diet composition and prey preference of tench, Tinca tinca (L.), common bream, Abramis brama (L.), perch, Perca fluviatilis L. and roach, Rutilus rutilus (L.), in two contrasting gravel pit lakes: potential trophic overlap with wildfowl // J. Fish Biol. V. 37. № 6. P. 945–947. https://doi.org/10.1111/j.1095-8649.1990.tb03598.x
  34. Gill A.B. 2003. The dynamics of prey choice in fish: the importance of prey size and satiation // Ibid. V. 63. № s1. P. 105–116. https://doi.org/10.1111/j.1095-8649.2003.00214.x
  35. Gill A.B., Hart P.J.B. 1994. Feeding behavior and prey choice of the threespine stickleback: the interacting effects of prey size, fish size and stomach fullness // Anim. Behav. V. 47. № 4. P. 921–932. https://doi.org/10.1006/anbe.1994.1124
  36. Gill A.B., Hart P.J.B. 1996. Unequal competition between three-spined stickleback, Gasterosteus aculeatus L., encountering sequential prey // Ibid. V. 51. № 3. P. 689–698. https://doi.org/10.1006/anbe.1996.0072
  37. Gill A.B., Hart P.J.B. 1998. Stomach capacity as a directing factor in prey size selection of three-spined stickleback // J. Fish Biol. V. 53. № 4. P. 897–900. https://doi.org/10.1111/j.1095-8649.1998.tb01844.x
  38. Hara T.J. 2007. Gustation // Sensory systems neuroscience. N.Y.: Acad. Press. P. 45–96. https://doi.org/10.1016/S1546-5098(06)25002-7
  39. Hart P.J.B. 1997. Foraging tactics // Behavioural ecology of teleost fishes. Oxford: Oxford Univ. Press. P. 104–133. https://doi.org/10.1093/oso/9780198547846.003.0005
  40. Hart P.J.B., Ison S. 1991. The influence the prey size and abundance, and individual phenotype on prey choice by the three-spined stickleback, Gasterosteus aculeatus L. // J. Fish Biol. V. 38. № 3. P. 359–372. https://doi.org/10.1111/j.1095-8649.1991.tb03126.x
  41. Hellawell J.M. 1972. The growth, reproduction and food of the roach Rutilus rutilus (L.), of the River Lugg, Herefordshire // Ibid. V. 4. № 4. P. 469–486. https://doi.org/10.1111/j.1095-8649.1972.tb05696.x
  42. Horppila J. 1994. The diet and growth of roach (Rutilus rutilus (L.)) in Lake Vesijärvi and possible changes in the course of biomanipulation // Hydrobiologia. V. 294. № 1. P. 35–41. https://doi.org/10.1007/BF00017623
  43. Huser B., Bartels P. 2015. Feeding ecology of carp // Biology and ecology of carp. Boca Raton: CRC Press. P. 217–243. https://doi.org/10.1201/b18547-17
  44. Ibrahim A.A., Huntingford F.A. 1992. Experience of natural prey and feeding efficiency in three-spined sticklebacks (Gasterosteus aculeatus L.) // J. Fish Biol. V. 41. № 4. P. 619–625. https://doi.org/10.1111/j.1095-8649.1992.tb02688.x
  45. Ikenaga T., Ogura T., Finger T.E. 2009. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish: cellular organization and neurotransmitters // J. Comp. Neurol. V. 516. № 3. P. 213–225. https://doi.org/10.1002/cne.22097
  46. Jackson L.A., Rakocinski C.F., Blaylock R.B. 2013. Feeding performance of juvenile hatchery-reared spotted seatrout Cynoscion nebulosus // J. Fish Biol. V. 82. № 3. P. 1032–1046. https://doi.org/10.1111/jfb.12052
  47. Janssen J. 1978. Feeding-behavior repertoire of the alewife, Alosa pseudoharengus, and the ciscoes Coregonus hoyi and C. artedii // J. Fish. Res. Board Can. V. 35. № 2. P. 249–253. https://doi.org/10.1139/f78-040
  48. Jobling M., Alanärä A., Kadri S., Huntingford F. 2012. Feeding biology and foraging // Aquaculture and behavior. Hoboken: Blackwell Publ. Ltd. P. 121–149. https://doi.org/10.1002/9781444354614.ch5
  49. Kasumyan А.О. 2014. Behavior and gustatory reception of air-breathing catfishes (Clariidae) // J. Ichthyol. V. 54. № 10. P. 934–943. https://doi.org/10.1134/S0032945214100075
  50. Kasumyan A.O., Isaeva O.M. 2022. Timeline of orosensory food testing in carp fish (Cyprinidae) // Ibid. V. 62. № 6. P. 1170–1189. https://doi.org/10.1134/S0032945222060133
  51. Kasumyan A., Levina A. 2023. Are the taste preferences similar in closely related fish of the same trophic category? A case of Nile and Mozambique tilapias // Rev. Fish Biol. Fish. V. 33. № 4. P. 1371–1386. https://doi.org/10.1007/s11160-023-09763-w
  52. Kasumyan A.O., Mikhailova E.S. 2018. Rapid gustatory food evaluation in fish // J. Ichthyol. V. 58. № 6. P. 916–926. https://doi.org/10.1134/S0032945218060073
  53. Kasumyan A.O., Isaeva O.M., Oanh L.T.K. 2022. Taste preferences and orosensory feed testing behavior in barramundi Lates calcarifer (Latidae, Perciformes) // J. Mar. Sci. Eng. V. 10. № 9. Article 1213. https://doi.org/10.3390/jmse10091213
  54. Kislalioglu M., Gibson R.N. 1976. Prey ‘handling time’ and its importance in food selection by the 15-spined stickleback, Spinachia spinachia (L.) // J. Exp. Mar. Biol. Ecol. V. 25. № 2. P. 151–158. https://doi.org/10.1016/0022-0981(76)90016-2
  55. Kottelat M., Freyhof J. 2007. Handbook of European freshwater fishes. Cornol; Berlin: Kottelat and Freyhof, 646 p.
  56. L’Abée-Lund J.H., Aass P., Sægrov H. 1996. Prey orientation in piscivorous brown trout // J. Fish Biol. V. 48. № 5. P. 871–877. https://doi.org/10.1111/j.1095-8649.1996.tb01482.x
  57. Lammens E.H.R.R., Hoogenboezem W. 1991. Diets and feeding behavior // Cyprinid fishes. Dordrecht: Springer. P. 353–376. https://doi.org/10.1007/978-94-011-3092-9_12
  58. Lappalainen A., Westerbom M., Vesala S. 2004. Blue mussels (Mytilus edulis) in the diet of roach (Rutilus rutilus) in outer archipelago areas of the western Gulf of Finland, Baltic Sea // Hydrobiologia. V. 514. № 1–3. P. 87–92. https://doi.org/10.1023/b:hydr.0000018209.10032.0c
  59. Mann R.H.K. 1973. Observations on the age, growth, reproduction and food of the roach Rutilus rutilus (L.) in two rivers in southern England // J. Fish Biol. V. 5. № 6. P. 707–736. https://doi.org/10.1111/j.1095-8649.1973.tb04506.x
  60. Mann R.H.K. 1974. Observations on the age, growth, reproduction and food of the dace Leuciscus leuciscus (L.) in two rivers in Southern England // Ibid. V. 6. № 3. P. 237–253. https://doi.org/10.1111/j.1095-8649.1974.tb04542.x
  61. McLaughlin R.L., Grant J.W.A., Noakes D.L.G. 2000. Living with failure: the prey capture success of young brook charr in streams // Ecol. Freshw. Fish. V. 9. № 1–2. P. 81–89. https://doi.org/10.1034/j.1600-0633.2000.90109.x
  62. Mikheev V.N. 2000. Foraging behavior of fishes and habitat complexity: searching, prey selection, and conflict of motivations // J. Ichthyol. V. 40. Suppl. 2. P. S262–S270.
  63. Nagelkerke L.A.J., Sibbing F.A. 1996. Efficiency of feeding on zebra mussel (Dreissena polymorpha) by common bream (Abramis brama), white bream (Blicca bjoerkna), and roach (Rutilus rutilus): the effects of morphology and behavior // Can. J. Fish. Aquat. Sci. V. 53. № 12. P. 2847–2861. https://doi.org/10.1139/f96-229
  64. O’Brien W.J., Evans B.I., Browman H.I. 1989. Flexible search tactics and efficient foraging in saltatory searching animals // Oecologia. V. 80. № 1. P. 100–110. https://doi.org/10.1007/BF00789938
  65. Paśko Ł. 2010. Tool-like behavior in the sixbar wrasse, Thalassoma hardwicke (Bennett, 1830) // Zoo Biol. V. 29. № 6. P. 767–773. https://doi.org/10.1002/zoo.20307
  66. Paszkowski C.A., Tonn W.M., Holopainen I.J. 1989. An experimental study of body size and food size relations in crucian carp, Carassius carassius // Environ. Biol. Fish. V. 24. № 4. P. 275–286. https://doi.org/10.1007/BF00001401
  67. Pavlov D.S., Kasumyan A.O. 2002. Feeding diversity in fishes: trophic classification of fish // J. Ichthyol. V. 42. Suppl. 2. P. S137–S159.
  68. Persson L. 1983. Food consumption and the significance of detritus and algae to intraspecific competition in roach Rutilus rutilus in a shallow eutrophic lake // Oikos. V. 41. № 1. P. 118–125. https://doi.org/10.2307/3544353
  69. Prejs A. 1984. Herbivory by temperate freshwater fishes and its consequences // Environ. Biol. Fish. V. 10. № 4. P. 281–296. https://doi.org/10.1007/BF00001481
  70. Pryor K.J. 2022. Tool use by the orange wrasse Pseudolabrus luculentus and doubleheader Coris bulbifrons // Mar. Ecol. V. 43. № 6. Article e12727. https://doi.org/10.1111/maec.12727
  71. Rahman M.M., Kadowaki S., Balcombe S.R., Wahab M.A. 2010. Common carp (Cyprinus carpio L.) alters its feeding niche in response to changing food resources: direct observations in simulated ponds // Ecol. Res. V. 25. № 2. P. 303–309. https://doi.org/10.1007/s11284-009-0657-7
  72. Sakata Y., Tsukahara J., Kiyohara S. 2001. Distribution of nerve fibers in the barbels of sea catfish Plotosus lineatus // Fish. Sci. V. 67. № 6. P. 1136–1144. https://doi.org/10.1046/j.1444-2906.2001.00371.x
  73. Sataeva V.V., Kasumyan A.O. 2022. Orosensory preferences and feeding behavior of Cladistia: a comparison of gray bichir Polypterus senegalus and saddle bichir P. endlicherii (Polypteridae) // J. Ichthyol. V. 62. № 7. Р. 1501–1520. https://doi.org/10.1134/S003294522204021X
  74. Sibbing F.A., Osse J.W.M., Terlouw A. 1986. Food handling in the carp (Cyprinus carpio): its movement patterns, mechanisms and limitations // J. Zool. V. 210. № 2. P. 161–203. https://doi.org/10.1111/j.1469-7998.1986.tb03629.x
  75. Sundström L.F., Lõhmus M., Devlin R.H. et al. 2004. Feeding on profitable and unprofitable prey: comparing behaviour of growth-enhanced transgenic and normal coho salmon (Oncorhynchus kisutch) // Ethology. V. 110. № 5. P. 381–396. https://doi.org/10.1111/j.1439-0310.2004.00985.x
  76. Tan M., Armbruster J.W. 2018. Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi) // Zootaxa. V. 4476. № 1. P. 6–39. https://doi.org/10.11646/zootaxa.4476.1.4
  77. Vandewalle P., Saintin P., Chardon M. 1995. Structures and movements of the buccal and pharyngeal jaws in relation to feeding in Diplodus sargus // J. Fish Biol. V. 46. № 4. P. 623–656. https://doi.org/10.1111/j.1095-8649.1995.tb01101.x
  78. Wanzenböck J. 1995. Changing handling times during feeding and consequences for prey size selection of 0+ zooplanktivorous fish // Oecologia. V. 104. № 3. P. 372–378. https://doi.org/10.1007/BF00328373
  79. Ware D.M. 1972. Predation by rainbow trout (Salmo gairdneri): the influence of hunger, prey density, and prey size // J. Fish. Res. Board Can. V. 29. № 8. P. 1193–1201. https://doi.org/10.1139/f72-175
  80. Weatherley N.S. 1987. The diet and growth of 0-group dace, Leuciscus leuciscus (L.), and roach, Rutilus rutilus (L.), in a lowland river // J. Fish Biol. V. 30. № 3. P. 237–247. https://doi.org/10.1111/j.1095-8649.1987.tb05749.x
  81. Welch D.W., Pankhurst P.M. 2001. Visual morphology and feeding behaviour of the daggertooth // Ibid. V. 58. № 5. P. 1427–1437. https://doi.org/10.1111/j.1095-8649.2001.tb02297.x
  82. Werner E.E. 1974. The fish size, prey size, handling time relation in several sunfishes and some implications // J. Fish. Res. Board Can. V. 31. № 9. P. 1531–1536. https://doi.org/10.1139/f74-186
  83. Whitear M. 1971. The free nerve endings if fish epidermis // J. Zool. V. 163. № 2. P. 231–236. https://doi.org/10.1111/j.1469-7998.1971.tb04532.x
  84. Whitear M. 1992. Solitary chemosensory cells // Fish chemoreception. Dordrecht: Springer. P. 103–125. https://doi.org/10.1007/978-94-011-2332-7_6
  85. Wootton R.J. 1998. Ecology of teleost fishes. Dordrecht; Boston: Kluwer Acad. Publ., 386 p.
  86. Wunder W. 1927. Sinnesphysiologische Untersuchungen über die Nahrungsaufnahme bei verschiedenen Knochenfischarten // Z. Vergl. Physiol. V. 6. № 1. P. 67–98. https://doi.org/10.1007/BF0033367

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of experiments performed on the dace Leuciscus leuciscus by the parameters of response to granules with carboxylic acids (n = 2200). Here and in Figs. 3, 4: a – number of granule grasps in the experiment, б – duration of granule retention after the first grasp (■) and total duration of granule retention (■) in the experiment; samples with the number of experiments ≥ 10 are shown.

Download (489KB)
3. Fig. 2. Spearman's correlation coefficient between the parameters of the response of carp fish to granules with carboxylic acids: a - dace Leuciscus leuciscus, б - roach Rutilus rutilus, в - carp Cyprinus carpio; г - common bitterling Rhodeus sericeus (according to: Kasumyan, Isaeva, 2023); д - nine-spined stickleback Pungitius pungitus (according to: Mikhailova, Kasumyan, 2018); C is the consumption of pellets, G is the number of pellet grasps in the experiment, t is the duration of pellet retention after the first grasp, T is the total duration of pellet retention in the experiment; the relationship is significant at p: * < 0.05, ** < 0.01, *** < 0.001.

Download (2MB)
4. Fig. 3. Distribution of experiments performed on roach Rutilus rutilus by response parameters to granules with carboxylic acids (n = 1316).

Download (433KB)
5. Fig. 4. Distribution of experiments performed on the carp Cyprinus carpio according to the parameters of response to granules with carboxylic acids (n = 3095).

Download (465KB)
6. Fig. 5. The number of grasps (a), the duration of pellet retention after the first grasp (б) and the total duration of pellet retention (в) with different concentrations of citric and ascorbic acids in carp Cyprinus carpio; the difference from the control is significant at p: * < 0.05, ** < 0.01, *** < 0.001. Here and in Figs. 6–8: (⏉) is the error of the mean.

Download (825KB)
7. Fig. 6. Number of grasps (a), duration of pellet retention after the first grasp (б) and total duration of pellet retention (в) in the dace Leuciscus leuciscus in experiments that ended with consumption (■) or refusal (■) of the pellet. Acids: 1 — formic, 2 — caproic, 3 — propionic, 4 — valerianic, 5 — butyric, 6 — acetic, 7 — α-ketoglutaric, 8 — oxalic, 9 — glycolic, 10 — maleic, 11 — fumaric, 12 — succinic, 13 — tartaric, 14 — malic, 15 — adipic, 16 — malonic, 17 — citric, 18 — ascorbic; 19 — control. The difference in the number of grasps between trials that ended with consumption and refusal to consume the pellet is significant at p: * < 0.05, ** < 0.01. Here and in Fig. 7, 8: carboxylic acids are listed in order of decreasing taste attractiveness, the concentration of all acids is 10−1 M, the differences in the duration of retention after the first granule setting and in the total duration of granule retention are significant at p < 0.001 for all acids.

Download (1MB)
8. Fig. 7. Number of grasps (a), duration of pellet retention after the first grasp (б) and total duration of pellet retention (в) of roach Rutilus rutilus in experiments that ended with consumption (■) or refusal (■) of the pellet. Acids: 1 — formic, 2 — acetic, 3 — tartaric, 4 — adipic, 5 — citric, 6 — oxalic, 7 — valerianic, 8 — fumaric, 9 — maleic, 10 — α-ketoglutaric, 11 — caproic, 12 — malic, 13 — succinic, 14 — malonic, 15 — glycolic, 16 — boric, 17 — ascorbic; 18 — control. Here and in Fig. 8: the difference in the number of grasps between experiments that ended with consumption and refusal to consume the pellet is significant at p: * < 0.05, ** < 0.01, *** < 0.001.

Download (1MB)
9. Fig. 8. The number of grasps (a), the duration of pellet retention after the first grasp (б) and the total duration of pellet retention (в) in the carp Cyprinus carpio in experiments that ended with consumption (■) or refusal (■) of the pellet. Tested substances: acids: 1 - citric, 2 - tartaric, 3 - adipic, 4 - α-ketoglutaric, 5 - propionic, 6 - malic, 7 - butyric, 8 - glutaric, 9 - formic, 10 - acetic, 11 - oxalic, 12 - succinic, 13 - maleic, 14 - fumaric, 15 - malonic, 16 - ascorbic, 17 - boric; 18 - Chironomidae larval extract, 19 - control.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences