Domestic goat as a promising animal model for high-level brain function research

Cover Page

Cite item

Full Text

Abstract

Goats were the first animals to undergo domestication. Despite the fact that they are bred across much of the world, they have not yet been widely used as a research model. However, goats have remarkable cognitive abilities, complex and varied social behaviour, and due to their size and low maintenance requirements, they may serve as a promising model for studying neurological conditions, especially neurodegenerative diseases. This review focuses on current research into the central nervous system of goats, as well as their behaviour and cognitive abilities.

Full Text

Restricted Access

About the authors

N. S. Gladysh

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: natalyagladish@gmail.com
Russian Federation, Moscow

A. K. Piskunov

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: natalyagladish@gmail.com
Russian Federation, Moscow

Yu. A. Stolpovsky

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: natalyagladish@gmail.com
Russian Federation, Moscow

Zh. V. Samsonova

Lomonosov Moscow State University

Email: natalyagladish@gmail.com
Russian Federation, Moscow

N. Yu. Saushkin

Lomonosov Moscow State University

Email: natalyagladish@gmail.com
Russian Federation, Moscow

V. V. Volodin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: natalyagladish@gmail.com
Russian Federation, Moscow

A. A. Kudryavtsev

Razumovsky Moscow State University of Technologies and Management (First Cossack University)

Email: natalyagladish@gmail.com
Russian Federation, Moscow

A. V. Kudryavtseva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: natalyagladish@gmail.com
Russian Federation, Moscow

References

  1. Agarwal P., Kumar M., Kumar K. et al. Isolation and propagation of neural stem cells in caprine (Capra hircus) // Cell Biol. Int. 2014. V. 38 (8). P. 953–961.
  2. Alvites R.D., Branquinho M.V., Sousa A.C. et al. Small ruminants and its use in regenerative medicine: recent works and future perspectives // Biology. 2021. V. 10 (3). 249.
  3. Aydoğdu S., Eken E. Calculation of cerebral hemispheres volume values (grey matter, white matter and lateral ventricle) of sheep and goat: a stereological study // Anat. Histol. Embryol. 2024. V. 53 (1). e12983.
  4. Azkona G., Sanchez-Pernaute R. Mice in translational neuroscience: what R we doing? // Prog. Neurobiol. 2022. V. 217. 102330.
  5. Bano B., Sumbul S. Oxidative stress induced functional and structural modifications of high molecular mass goat brain cystatin // Protein Pept. Lett. 2008. V. 15 (1). P. 20–26.
  6. Barroso F.G., Alados C.L., Boza J. Social hierarchy in the domestic goat: effect on food habits and production // Appl. Anim. Behav. Sci. 2000. V. 69 (1). P. 35–53.
  7. Baruzzi C., Nawroth C., McElligott A.G., Baciadonna L. Motor asymmetry in goats during a stepping task // Laterality. 2018. V. 23 (5). P. 599–609.
  8. Bhat W.F., Bhat S.A., Khaki P.S.S., Bano B. Employing in vitro analysis to test the potency of methylglyoxal in inducing the formation of amyloid-like aggregates of caprine brain cystatin // Amino Acids. 2015. V. 47 (1). P. 135–146.
  9. Briefer E.F., Padilla De La Torre M., McElligott A.G. Mother goats do not forget their kids’ calls // Proc. R. Soc. B Biol. Sci. 2012. V. 279 (1743). P. 3749–3755.
  10. Briefer E.F., Haque S., Baciadonna L., McElligott A.G. Goats excel at learning and remembering a highly novel cognitive task // Front. Zool. 2014. V. 11 (1). 20.
  11. Buchholz K.J., Burgraff N.J., Neumueller S.E. et al. Physiological and neurochemical adaptations following abrupt termination of chronic hypercapnia in goats // J. Appl. Physiol. 2021. V. 130 (4). P. 1259–1273.
  12. Burgraff N.J., Neumueller S.E., Buchholz K.J. et al. Midbrain and cerebral inflammatory and glutamatergic adaptations during chronic hypercapnia in goats // Brain Res. 2019a. V. 1724. 146437.
  13. Burgraff N.J., Neumueller S.E., Buchholz K.J. et al. Brainstem serotonergic, catecholaminergic, and inflammatory adaptations during chronic hypercapnia in goats // FASEB J. 2019b. V. 33 (12). P. 14491–14505.
  14. Capucciati A., Zucca F.A., Monzani E. et al. Interaction of neuromelanin with xenobiotics and consequences for neurodegeneration; promising experimental models // Antioxidants. 2021. V. 10 (6). 824.
  15. Carlson G.A., Prusiner S.B. How an infection of sheep revealed prion mechanisms in Alzheimer’s disease and other neurodegenerative disorders // Int. J. Mol. Sci. 2021. V. 22 (9). 4861.
  16. Chojnacki R.M., Vas J., Andersen I.L. The effects of prenatal stocking densities on the fear responses and sociality of goat (Capra hircus) kids // PLoS One. 2014. V. 9 (4). P. e94253.
  17. Christidi F., Migliaccio R., Santamaría-García H. et al. Social cognition dysfunctions in neurodegenerative diseases: neuroanatomical correlates and clinical implications // Behav. Neurol. 2018. V. 2018. P. 1–18.
  18. Larsen G.D. A reliable ruminate for research // Lab Anim. 2015. V. 44 (9). 337.
  19. Daly K.G., Mattiangeli V., Hare A.J. et al. Herded and hunted goat genomes from the dawn of domestication in the Zagros Mountains // PNAS USA. 2021. V. 118 (25). e2100901118.
  20. Di Lucrezia A., Scandurra A., Pinelli C. et al. A comparative study of dogs and goats with limited human socialization in the impossible task paradigm // Animals. 2023. V. 13 (19). 3027.
  21. Dias I.E., Viegas C.A., Requicha J.F. et al. Mesenchymal stem cell studies in the goat model for biomedical research – a review of the scientific literature // Biology. 2022. V. 11 (9). 1276.
  22. Dige M.S., Gurao A., Mehrotra A. et al. Deciphering the molecular mechanisms of heat stress tolerance in goats: insights from transcriptome and gene co-expression analysis // J. Therm. Biol. 2024. V. 125. 104007.
  23. Eaton S.L., Wishart T.M. Bridging the gap: large animal models in neurodegenerative research // Mamm. Genome. 2017. V. 28 (7–8). P. 324–337.
  24. El Sabry M.I., Almasri O. Stocking density, ambient temperature, and group size affect social behavior, productivity and reproductivity of goats – a review // Trop. Anim. Health Prod. 2023. V. 55 (3). 181.
  25. Elkhenany H., Amelse L., Caldwell M. et al. Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering // J. Anim. Sci. Biotechnol. 2016. V. 7 (1). 16.
  26. Ertelt K., Oevermann A., Precht C. et al. Magnetic resonance imaging findings in small ruminants with brain disease // Vet. Radiol. Ultrasound. 2016. V. 57 (2). P. 162–169.
  27. Fecteau G., Parent J., George L.W. Neurologic examination of the ruminant // Vet. Clin. North Am. Food Anim. Pract. 2017. V. 33 (1). P. 1–8.
  28. Feng W., Fan D., Wu H., Yuan W. Cow behavior recognition based on wearable nose rings // Animals. 2024. V. 14 (8). 1187.
  29. Finkemeier M.-A., Krause A., Tuchscherer A. et al. Personality traits affect learning performance in dwarf goats (Capra hircus) // Front. Vet. Sci. 2022. V. 9. 916459.
  30. Fulton L.K., Clarke M.S., Farris H.E. The goat as a model for biomedical research and teaching // ILAR J. 1994. V. 36 (2). P. 21–29.
  31. Gao Y., Almalki W.H., Afzal O. et al. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of Alzheimer’s disease // Biomed. Pharmacother. 2021. V. 141. 111829.
  32. Giriboni J., Lacuesta L., Damián J.P., Ungerfeld R. Grouping previously unknown bucks is a stressor with negative effects on reproduction // Trop. Anim. Health Prod. 2015. V. 47 (2). P. 317–322.
  33. Grams K.J., Neumueller S.E., Mouradian G.C. et al. Mild and moderate chronic hypercapnia elicit distinct transcriptomic responses of immune function in cardiorespiratory nuclei // Physiol. Genomics. 2023. V. 55 (11). P. 487–503.
  34. Greenlee J.J., Greenlee M.H.W. The transmissible spongiform encephalopathies of livestock // ILAR J. 2015. V. 56 (1). P. 7–25.
  35. Häni A., Diserens G., Oevermann A. et al. Sampling method affects HR-MAS NMR spectra of healthy caprine brain biopsies // Metabolites. 2021. V. 11 (1). 38.
  36. Hartley A., Shrader A.M., Chamaillé-Jammes S. Can intrinsic foraging efficiency explain dominance status? A test with functional response experiments // Oecologia. 2019. V. 189 (1). P. 105–110.
  37. Hollevoet A., De Waele T., Peralta D. et al. Goats on the move: evaluating machine learning models for goat activity analysis using accelerometer data // Animals. 2024. V. 14 (13). 1977.
  38. Hwang S., Dassanayake R.P., Nicholson E.M. PAD-beads enrichment enhances detection of PrPSc using real-time quaking-induced conversion // BMC Res. Notes. 2019. V. 12 (1). 806.
  39. Jardat P., Lansade L. Cognition and the human–animal relationship: a review of the sociocognitive skills of domestic mammals toward humans // Anim. Cogn. 2022. V. 25 (2). P. 369–384.
  40. Kannan G., Estrada-Reyes Z.M., Batchu P. et al. Social isolation of goats: significance of visual contact with conspecifics on behavioral and physiological responses // J. Anim. Sci. 2021. V. 99 (6). skab150.
  41. Keil N.M., Imfeld-Mueller S., Aschwanden J., Wechsler B. Are head cues necessary for goats (Capra hircus) in recognising group members? // Anim. Cogn. 2012. V. 15 (5). P. 913–921.
  42. Keller M., Lévy F. The main but not the accessory olfactory system is involved in the processing of socially relevant chemosignals in ungulates // Front. Neuroanat. 2012. V. 6. 39.
  43. Khaki P.S.S., Feroz A., Amin F et al. Structural and functional studies on a variant of cystatin purified from brain of Capra hircus // J. Biomol. Struct. Dyn. 2017. V. 35 (8). P. 1693–1709.
  44. Konold T., Bone G.E., Phelan L.J. et al. Monitoring of clinical signs in goats with transmissible spongiform encephalopathies // BMC Vet. Res. 2010. V. 6 (1). 13.
  45. Kumar P., Abubakar A.A., Ahmed M.A. et al. Electroencephalogram and physiological responses as affected by slaughter empathy in goats // Animals. 2023. V. 13 (6). 1100.
  46. Langbein J. Motor self-regulation in goats (Capra aegagrus hircus) in a detour-reaching task // PeerJ. 2018. V. 6. e5139.
  47. Langbein J., Nürnberg G., Manteuffel G. Visual discrimination learning in dwarf goats and associated changes in heart rate and heart rate variability // Physiol. Behav. 2004. V. 82 (4). P. 601–609.
  48. Langbein J., Nürnberg G., Puppe B., Manteuffel G. Self-controlled visual discrimination learning of group-housed dwarf goats (Capra hircus): behavioral strategies and effects of relocation on learning and memory // J. Comp. Psychol. 2006. V. 120 (1). P. 58–66.
  49. Langbein J., Siebert K., Nürnberg G. On the use of an automated learning device by group-housed dwarf goats: do goats seek cognitive challenges? // Appl. Anim. Behav. Sci. 2009. V. 120 (3–4). P. 150–158.
  50. Langbein J., Krause A., Nawroth C. Human-directed behaviour in goats is not affected by short-term positive handling // Anim. Cogn. 2018. V. 21 (6). P. 795–803.
  51. Langer T.M., Neumueller S.E., Crumley E. et al. Ventilation and neurochemical changes during µ-opioid receptor activation or blockade of excitatory receptors in the hypoglossal motor nucleus of goats // J. Appl. Physiol. 2017. V. 123 (6). P. 1532–1544.
  52. Li C., Lv C., Larbi A. et al. Revisiting the injury mechanism of goat sperm caused by the cryopreservation process from a perspective of sperm metabolite profiles // Int. J. Mol. Sci. 2024. V. 25 (16). 9112.
  53. Liu M., Liu S., Qin L. et al. Global changes of miRNA expression indicates an increased reprogramming efficiency of induced mammary epithelial cells by repression of miR-222-3p in fibroblasts // PeerJ. 2024. V. 12. e17657.
  54. Luigi-Sierra M.G., Guan D., López-Béjar M. et al. A protein-coding gene expression atlas from the brain of pregnant and non-pregnant goats // Front. Genet. 2023. V. 14. 1114749.
  55. Lukiw W.J. Recent advances in our molecular and mechanistic understanding of misfolded cellular proteins in Alzheimer’s disease (AD) and prion disease (PrD) // Biomolecules. 2022. V. 12 (2). 166.
  56. Lürzel S., Bückendorf L., Waiblinger S., Rault J.-L. Salivary oxytocin in pigs, cattle, and goats during positive human-animal interactions // Psychoneuroendocrinology. 2020. V. 115. 104636.
  57. Mammadova N., West Greenlee M.H., Moore S.J. et al. Evaluation of antemortem diagnostic techniques in goats naturally infected with scrapie // Front. Vet. Sci. 2020. V. 7. 517862.
  58. Mao A., Huang E., Wang X., Liu K. Deep learning-based animal activity recognition with wearable sensors: overview, challenges, and future directions // Comp. Electron. Agric. 2023. V. 211. 108043.
  59. Mastellone V., Scandurra A., D’Aniello B. et al. Long-term socialization with humans affects human-directed behavior in goats // Animals. 2020. V. 10 (4). 578.
  60. Middleton J.R. Cerebral disorders of the adult ruminant // Vet. Clin. North Am. Food Anim. Pract. 2017. V. 33 (1). P. 43–57.
  61. Miranda-de La Lama G.C., Mattiello S. The importance of social behaviour for goat welfare in livestock farming // Small Rumin. Res. 2010. V. 90 (1–3). P. 1–10.
  62. Na Q., Zhang S., Shao P. et al. In vitro generation of trophoblast like stem cells from goat pluripotent stem cells // Theriogenology. 2024. V. 226. P. 120–129.
  63. Naderi S., Rezaei H.-R., Pompanon F. et al. The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals // PNAS USA. 2008. V. 105 (46). P. 17659–17664.
  64. Nagy D.W. Diagnostics and ancillary tests of neurologic dysfunction in the ruminant // Vet. Clin. North Am. Food Anim. Pract. 2017. V. 33 (1). P. 9–18.
  65. Nair M.R.R., Sejian V., Silpa M.V. et al. Goat as the ideal climate-resilient animal model in tropical environment: revisiting advantages over other livestock species // Int. J. Biometeorol. 2021. V. 65 (12). P. 2229–2240.
  66. Napolitano F., Serrapica M., Braghieri A. et al. Can we monitor adaptation of juvenile goats to a new social environment through continuous qualitative behaviour assessment? // PLoS One. 2018. V. 13 (7). e0200165.
  67. Nawroth C., Brett J.M., McElligott A.G. Goats display audience-dependent human-directed gazing behaviour in a problem-solving task // Biol. Lett. 2016. V. 12 (7). 20160283.
  68. Nawroth C., Prentice P.M., McElligott A.G. Individual personality differences in goats predict their performance in visual learning and non-associative cognitive tasks // Behav. Process. 2017. V. 134. P. 43–53.
  69. Nawroth C., Albuquerque N., Savalli C. et al. Goats prefer positive human emotional facial expressions // R. Soc. Open Sci. 2018. V. 5 (8). 180491.
  70. Nawroth C., Martin Z.M., McElligott A.G. Goats follow human pointing gestures in an object choice task // Front. Psychol. 2020. V. 11. 915.
  71. Nordquist R., van der Staay F., van Eerdenburg F. et al. Mutilating procedures, management practices, and housing conditions that may affect the welfare of farm animals: implications for welfare research // Animals. 2017. V. 7 (2). 12.
  72. Onodera T., Sakudo A. Introduction to current progress in advanced research on prions // Curr. Issues Mol. Biol. 2020. V. 36. P. 63–66.
  73. Patt A., Gygax L., Wechsler B. et al. The introduction of individual goats into small established groups has serious negative effects on the introduced goat but not on resident goats // Appl. Anim. Behav. Sci. 2012. V. 138 (1–2). P. 47–59.
  74. Pitcher B.J., Briefer E.F., Baciadonna L., McElligott A.G. Cross-modal recognition of familiar conspecifics in goats // R. Soc. Open Sci. 2017. V. 4 (2). 160346.
  75. Promsao N., Yama P., Suriard A. et al. Associations among the largest follicle, preovulatory estradiol concentrations, and predominant vaginal epithelial cells at the completion of hormonal ovarian stimulation for fixed‐time artificial insemination in goats // Reprod. Domest. Anim. 2024. V. 59 (8). e14698.
  76. Raoult C.M.C., Osthaus B., Hildebrand A.C.G. et al. Goats show higher behavioural flexibility than sheep in a spatial detour task // R. Soc. Open Sci. 2021. V. 8 (3). 201627.
  77. Sánchez-Dávila F., Barragán H.B., Del Bosque-González A.S., Ungerfeld R. Social dominance affects the development of sexual behaviour but not semen output in yearling bucks // Theriogenology. 2018. V. 110. P. 168–174.
  78. Sankey D.W.E., O’Bryan L.R., Garnier S. et al. Consensus of travel direction is achieved by simple copying, not voting, in free-ranging goats // R. Soc. Open Sci. 2021. V. 8 (2). 201128.
  79. Schaffer A., Caicoya A.L., Colell M. et al. Gaze following in ungulates: domesticated and non-domesticated species follow the gaze of both humans and conspecifics in an experimental context // Front. Psychol. 2020. V. 11. 604904.
  80. Schaffer A., Caicoya A.L., Widdig A. et al. Quantity discrimination in 9 ungulate species: individuals take item number and size into account to discriminate quantities // Cognition. 2025. V. 254. 105979.
  81. Shah B.M., Misra M., Shishoo C.J., Padh H. Nose to brain microemulsion-based drug delivery system of rivastigmine: formulation and ex-vivo characterization // Drug Deliv. 2015. V. 22 (7). P. 918–930.
  82. Stachowicz J., Lanter A., Gygax L. et al. Under temperate weather conditions, dairy goats use an outdoor run more with increasing warmth and avoid light wind or rain // J. Dairy Sci. 2019. V. 102 (2). P. 1508–1521.
  83. Sunagawa K., Nagamine I., Fujino T. et al. Stereotaxic atlas of the goat brain for an accurate approach to the hypothalamic nuclei // Physiol. Behav. 2015. V. 145. P. 91–105.
  84. Toinon C., Waiblinger S., Rault J. Maternal deprivation affects goat kids’ social behavior before and after weaning // Dev. Psychobiol. 2022. V. 64 (4). e22269.
  85. Ungerfeld R., Giriboni J., Freitas-de-Melo A., Lacuesta L. Homosexual behavior in male goats is more frequent during breeding season and in bucks isolated from females // Horm. Behav. 2014. V. 65 (5). P. 516–520.
  86. Varela-Martínez E., Luigi-Sierra M.G., Guan D. et al. The landscape of long noncoding RNA expression in the goat brain // J. Dairy Sci. 2024. V. 107 (6). P. 4075–4091.
  87. Vas J., Andersen I.L. Density-dependent spacing behaviour and activity budget in pregnant, domestic goats (Capra hircus) // PLoS One. 2015. V. 10 (12). e0144583.
  88. Vayssade J.-A., Bonneau M. Puzzle: taking livestock tracking to the next level // Sci. Rep. 2024. V. 14 (1). 18348.
  89. Wester M., Gerritsen K.G., Simonis F. et al. A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: a study in awake goats // Nephrol. Dial. Transplant. 2017. V. 32. gfw108.
  90. Xie B., Brask J.B., Dabelsteen T., Briefer E.F. Exploring the role of vocalizations in regulating group dynamics // Philos. Trans. R. Soc. B Biol. Sci. 2024. V. 379 (1905). 20230183.
  91. Yoshida N., Koda N. Goats’ performance in unsolvable tasks is predicted by their reactivity toward humans, but not social rank // Front. Psychol. 2020. V. 11. 150.
  92. Zebunke M., Puppe B., Langbein J. Effects of cognitive enrichment on behavioural and physiological reactions of pigs // Physiol. Behav. 2013. V. 118. P. 70–79.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences