Functionalities of Ni–Ti Shape Memory Alloys and Their Efficiency as Event Actuators of Microelectromechanical Systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The functionalities of Ni–Ti alloys subjected to different deformation treatments are studied. A critical stress corresponding to the onset of degradation of the functional properties were determined; it was found that this stress is about twice as low as the yield stress. The efficiency coefficients of virtual thermodynamic machines with a working body made of the investigated materials were calculated and compared with the efficiency of a Carnot engine based on the same materials; the ideality factor has been calculated under the condition of actuating at stresses no higher than critical ones. It has been established that, at the single actuation, the highest ideality factor (9.7%) is characteristic of a material consisting of bars 20 to 5 mm in diameter obtained by warm forging at 350°C. It has been determined that, at discontinuous operation under stresses lower than the critical ones by a factor of 1.2, the ideality factor is 7.4–7.7% for alloys subjected to hot forging or equal channel angular pressing combined with warm forging.

Sobre autores

V. Kalashnikov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 125009 Russia

V. Koledov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 125009 Russia

V. Shavrov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 125009 Russia

V. Andreev

Baykov Institute of Metallurgy and Materials Science, Russian Academy of Science

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 119334 Russia

A. Nesolenov

Baykov Institute of Metallurgy and Materials Science, Russian Academy of Science

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 119334 Russia

D. Kuchin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 125009 Russia

R. Karelin

Baykov Institute of Metallurgy and Materials Science, Russian Academy of Science

Autor responsável pela correspondência
Email: Vladimir.kalashnikovS@gmail.com
Moscow, 119334 Russia

Bibliografia

  1. Jani J.M., Leary M., Subic A., Gibson M.A. // Materials and Design. 2014. V. 56. P. 1078. https://doi.org/10.1016/j.matdes.2013.11.084
  2. Otsuka K., Ren X. // Prog. Mater. Sci. 2005. V. 50. P. 511. https://doi.org/10.1016/j.pmatsci.2004.10.001
  3. Калашников В.С., Андреев В.А., Коледов В.В. и др. // Металловедение и термическая обработка металлов. 2019. Т. 770. С. 45.
  4. Калашников В.С., Коледов В.В., Кучин Д.С. и др. // Приборы и техника эксперимента. 2018. № 2. С. 139. https://doi.org/10.7868/S0032816218020155
  5. Калашников В.С., Коледов В.В., Кучин Д.С. и др. // Приборы и техника эксперимента. 2022. Т. 65. № 1. С. 139. https://doi.org/10.31857/S0032816222010049
  6. Smith J.F., Lück R., Jiang Q. et al. // J. Phase Equilibria. 1993. V. 14. № 4. P. 494. https://doi.org/10.1007/BF02671969
  7. Stachiv I., Alarcon E., Lamac M. // Metals. 2021. V. 11. № 3. Article No. 415. https://doi.org/10.3390/met11030415
  8. Wang X., Verlinden B., Humbeeck J.V. // Intermetallics. 2015. V. 62. P. 43. https://doi.org/10.1016/j.intermet.2015.03.006
  9. Калашников В.С., Мусабиров И.И., Коледов В.В. и др. // ЖТФ. 2020. Т. 90. № 4. С. 603. https://doi.org/10.21883/JTF.2020.04.49084.110-19

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (949KB)
3.

Baixar (162KB)

Declaração de direitos autorais © В.С. Калашников, В.В. Коледов, В.Г. Шавров, В.А. Андреев, А.В. Несоленов, Д.С. Кучин, Р.Д. Карелин, 2023