Dual-polarization ultra-wideband metal-dielectric horn feed

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A dual-polarization ultra-wideband feed in the form of a metal four-ridge conical horn with a conical two-layer dielectric insert is proposed and investigated. Electrodynamic modeling and optimization of the transition parameters are carried out using finite element and finite difference methods in the time domain. It is shown that the proposed feed provides matching below the level of -10 dB in the frequency band of 6...40 GHz and the efficiency of a single-mirror offset system of more than 0.5 in the frequency band of 6...30 GHz.

Full Text

Restricted Access

About the authors

V. A. Kaloshin

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Author for correspondence.
Email: vak@cplire.ru
Russian Federation, ul. Mokhovaya, 11, building 7, Moscow, 125007

The Thanh Nguyen

Moscow Institute of Physics and Technology (National Research University)

Email: vak@cplire.ru
Russian Federation, Institutsky per., 9, Dolgoprudny, Moscow region, 141700

References

  1. Akgiray A., Weinreb S., Imbriale W. //Proc. 2011 IEEE Int. Symp. on Antennas and Propagation. Spokane. 03-08 Jul. N.Y.:IEEE, 2011. P. 1135.
  2. Akgiray A., Weinreb S. // Proc. 2012 IEEE Int. Conf. on Ultra-Wideband. Syracuse. 17-20 Sept. N.Y.: IEEE, 2012. P. 518.
  3. Solak B., Secmen M., Tekin A. // Appl. Comp. Electromagnetics Soc. J. 2018. V. 33. № 9. P. 1009.
  4. Dong Bin, Yang Jian, Dahlstrom J. et al. // IEEE Trans. 2019. V. АР-67. № 1. P. 585.
  5. Ma Yue, Hwang C.S., Pang F. et al. // IEEE Access. 2020. V. 8. Article No. 81101.
  6. Dunning A., Bowen M., Bourne M. et al. // Proc. 2015 IEEE-APS Topical Conf. on Antennas and Propagation for Wireless Commun. (APWC). Turin. 07-11 Sept. N.Y.:IEEE, 2015. P. 787.
  7. Flygare J., Pantaleev M., Olvhammar S. // Proc. 12th Europ. Conf. on /ntennas and Propagtion (EuCAP 2018). London. 09-13 Apr.N.Y.:IEEE, 2018.Paper No. 0817.
  8. Flygare J., Pantaleev M. // IEEE Trans. 2020. V. АР-68. № 1. P. 207.
  9. Flygare J., Jang Jian., Pollak A.W. et al. // IEEE Trans. 2023. V. АР-71. № 3. P. 2110.
  10. Калошин В.А., Фам В.Ч. // РЭ. 2021. Т. 66. № 7. С. 649.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Longitudinal section of a metal-dielectric horn radiator.

Download (60KB)
3. Fig. 2. Excitation node.

Download (86KB)
4. Fig. 3. Normalised directional patterns of the irradiator in the E- (a) and H-plane (b) at frequencies 6 (1), 12 (2), 18 (3), 24 (4), 30 GHz (5).

Download (171KB)
5. Fig. 4. Dependence of the half-width of the main lobe of the illuminator DN on frequency at the level of -9 (1) and -18 dB (2) in the E- (a) and H-plane (b).

Download (128KB)
6. Fig. 5. Frequency dependence of the deviation of the position of the phase centre of the irradiator from the average position in the E- (1) and H-plane (2) and its average position (3).

Download (77KB)
7. Fig. 6. Phase diagrams of directivity in the E- (a) and H-plane (b) at frequencies 6 (1), 12 (2), 18 (3), 24 (4) and 30 GHz (5).

Download (185KB)
8. Fig. 7. Frequency dependence of the irradiator reflection coefficient from the first (1, 2) and second input (3, 4) calculated using FEM (1, 3) and ICRVO (2, 4).

Download (174KB)
9. Fig. 8. Frequency dependence of the decoupling coefficient on the irradiator input using FEM (1), ICRVO (2).

Download (139KB)
10. Fig. 9. Dependence of the gain (1, 2) and the magnitude of the FIR (3, 4) of the mirror antenna on the frequency calculated using FEM (1, 3) and ICRVO (2, 4).

Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences