Sorbent based on manganese(III, IV) oxides of the MDM brand: preparation, sorption characteristics and application for purification of liquid radioactive waste from strontium and radium radionuclides

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The optimal conditions for the synthesis of a granular sorbent based on mixed Mn(III, IV) oxide by the interaction of aqueous solutions of MnSO4 and KMpO4 in an alkaline medium were determined: the molar ratio Mn2+/MnO4 is 1.70–1.80; the pH of the reaction mixture is 11.0–12.5; the calcination temperature is 220°C. For the sorbent obtained under optimal conditions, the values of the distribution coefficient (Kd) 90Sr in 0.01 M CaCl2 solution, the static exchange capacity for calcium, the hydromechanical strength of granules, as well as the dependence of Kd 90Sr on the concentration of sodium and calcium ions were determined. It is shown that the resulting sorbent has higher sorption characteristics with respect to strontium compared with known sorbents. A technology has been developed for the production of pilot batches of sorbent, named MDM. Examples of the use of MDM sorbent for the purification of various types of liquid radioactive waste from strontium and radium radionuclides are given.

全文:

受限制的访问

作者简介

V. Milyutin

Frumkin Institute of Physical Chemistry and Electrochemistry

编辑信件的主要联系方式.
Email: vmilyutin@mail.ru
俄罗斯联邦, Moscow, 119071

O. Kononenko

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: vmilyutin@mail.ru
俄罗斯联邦, Moscow, 119071

N. Nekrasova

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: vmilyutin@mail.ru
俄罗斯联邦, Moscow, 119071

参考

  1. Myasoedov B.F., Kalmykov S.N. // Mendeleev Commun. 2015. Vol. 25. N 5. P. 319–328. https://doi.org/10.1016/j.mencom.2015.09.001.
  2. Castrillejo M., Casacuberta N., Breier C.F., Pike S.M., Masqué P., Buesseler K.O. // Environ. Sci. Technol. 2016. Vol. 50. N 1. P. 173–180. https://doi.org/10.1021/acs.est.5b03903.
  3. Milyutin V.V., Nekrasova N.A., Kaptakov V.O., Kozlitin E.A. // Adsorption. 2023. Vol. 29. P. 323–334. https://doi.org/10.1007/s10450-023-00407-w.
  4. Wilmarth W.R., Lumetta G.J., Johnson M.E., Poirier M.R., Thompson M.C., Suggs P.C., Machara N.P. // Solvent Extr. Ion Exch. 2011. Vol. 29. P. 1–48. https://doi.org/10.1080/07366299.2011.539134.
  5. Voronina A.V., Semenishchev V.S., Gupta D.K. // Strontium Contamination in the Environment: vol. 88 of The Series of Environmental Chemistry, Springer, 2020, pp. 203–226. https://doi.org/10.1007/978-3-030-15314-4_11.
  6. Hartmann E., Geckeis H., Rabung T., Lützenkirchen J., Fanghänel T. // Radiochim. Acta. 2008. Vol. 96. N 9. P. 699–707. https://doi.org/10.1524/ract.2008.1556.
  7. Milyutin V.V., Gelis V.M., Nekrasova N.A., Kononenko O.A., Vezentsev A.I., Volovicheva N.A., Korol’kova S.V. // Radiochemistry. 2012. Vol. 54. N 1. P. 75–78. https://doi.org/10.1134/S1066362212010110.
  8. Milyutin V.V., Nekrasova N.A., Belousov P.E., Krupskaya V.V. // Radiochemistry. 2021. Vol. 63. N 6. P. 741–746. https://doi.org/10.1134/S1066362221060059.
  9. Misaelides P. // Micropor. Mesopor. Mater. 2011. Vol. 144. N 1. P. 15–18. https://doi.org/10.1016/j.micromeso.2011.03.024.
  10. Kwon S., Choi Y., Sigh B.K. // Appl. Surf. Sci. 2020. Vol. 506. Article 145029. https://doi.org/10.1016/j.apsusc.2019.145029.
  11. Kuznetsov V.A., Generalova V.A. // Radiochemistry. 2000. Vol. 42. N 2. P. 166–169.
  12. Valsala T.P., Joseph A., Sonar N.L., Sonavane M.S., Shah J.G., Raj K., Venugopal V. // J. Nucl. Mater. 2010. Vol. 404. N 2. P. 138–143. https://doi.org/10.1016/j.jnucmat.2010.07.017.
  13. Singh B.K., Tomar R., Kumar S., Kar A.S., Tomar B.S., Ramanathan S., Manchanda V.K. // Radiochim. Acta. 2014. Vol. 102. N 3. P. 255–261. https://doi.org/10.1515/ract-2014-2118.
  14. Voronina A.V., Semenishchev V.S. // J. Radioanal. Nucl. Chem. 2016. Vol. 307. P. 577–590. https://doi.org/10.1007/s10967-015-4197-z.
  15. Ivanets A., Milyutin V., Shashkova I., Kitikova N., Nekrasova N., Radkevich A. // J. Radioanal. Nucl. Chem. 2020. Vol. 324. N 3. P. 1115–1123. https://doi.org/10.1007/s10967-020-07140-6.
  16. Thakkar R., Chudasama U. // J. Hazard. Mater. 2009. Vol. 172. N 1. P. 129–137. https://doi.org/10.1016/j.jhazmat.2009.06.154.
  17. Korneikov R.I., Ivanenko V.I. // Inorg. Mater. 2020. Vol. 56. P. 502–506. https://doi.org/10.1134/S0020168520050088.
  18. Bevara S., Giri P., Patwe S.J., Achary S.N., Mishra R.K., Kumar A., Sinha A.K., Kaushik C.P., Tyagi A.K. // J. Environ. Chem. Eng. 2018. Vol. 6. N 2. P. 2248–2261. https://doi.org/10.1016/j.jece.2018.03.013.
  19. Villard A., Toquer G., Siboulet B., Trens P., Grandjean A., Dufrêche J.-F. // Chemosphere. 2018. Vol. 202. P. 33–39. https://doi.org/10.1016/j.chemosphere.2018.02.017.
  20. Tratnjek T., Deschanels X., Hertz A., Rey C., Causse J. // J. Hazard. Mater. 2022. Vol. 440. Article 129755. https://doi.org/10.1016/j.jhazmat.2022.129755.
  21. Decaillon J.G., Andres Y., Mokili B.M., Abbe J.C., Tournoux M., Patarin J. // Solvent Extr. Ion Exch. 2002. Vol. 20. N 2. P. 273–291. https://doi.org/10.1081/SEI-120003027.
  22. Hobbs D.Т., Barnes M.J., Pulmano R.L., Marshall K.M., Edwards T.B., Bronikowski M.G., Fink S.D. // Sep. Sci. Technol. 2005. Vol. 40. N 15. P. 3093–3111. https://doi.org/10.1080/01496390500385129.
  23. Lehto J., Brodkin L., Harjula R., Tusa E. // Nucl. Technol. 1999. Vol. 127. N 1. P. 81–87. https://doi.org/10.13182/NT99-A2985.
  24. Milyutin V.V., Nekrasova N.A., Yanicheva N.Yu., Kalashnikova G.O., Ganicheva Ya.Yu. // Radiochemistry. 2017. Vol. 59. N 1. Р. 65–69. https://doi.org/10.1134/S1066362217010088.
  25. Park Y., Shin W.S., Reddy G.S., Shin S.-J., Choi S.-J. // J. Nanoelectron. Optoelectron. 2010. Vol. 5. N 2. P. 238–242. https://doi.org/10.1166/jno.2010.1101.
  26. Solbra S., Allison N., Waite S., Mihalovsky S.V., A.I., Bortun L.N., Clearfield A. // Environ. Sci. Technol. 2001. Vol. 35. N 3. Р. 626–629. https://doi.org/10.1021/es000136x.
  27. Matskevich A.I., Tokar E.A., Sokolnitskaya T.A., Markin N.S., Priimak I.D., Egorin A.M. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 5691–5699. https://doi.org/10.1007/s10967-022-08636-z.
  28. Singh O.V., Tandon S.N. // Int. J. Appl. Radiat. Isot. 1977. Vol. 28. N 8. P. 701–704. https://doi.org/10.1016/0020-708X(77)90088-6.
  29. Ivanets A.I., Milutin V.V., Prozorovich V.G., Kouznetsova T.F., Nekrasova N.A. // J. Radioanal. Nucl. Chem. 2019. Vol. 321. N 1. P. 243–253. https://doi.org/10.1007/s10967-019-06557-y.
  30. Egorin A., Sokolnitskaya T., Azarova Y., Portnyagin A., Balanov M., Misko D., Shelestyuk E., Kalashnikova A., Tokar E., Tananaev I., Avramenko V. // J. Radioanal. Nucl. Chem. 2018. Vol. 317. P. 243–251. https://doi.org/10.1007/s10967-018-5905-2.
  31. Bevara S., Giri P., Achary S.N., Bhallerao G., Mishra R.K., Kumar A., Kaushik C.P., Tyagi A.K. // J. Environ. Chem. Eng. 2018. Vol. 6. N 6. P. 7200–7213. https://doi.org/10.1016/j.jece.2018.11.021.
  32. Cai J., Liu J., Suib S.L. // Chem. Mater. 2002. Vol. 14. N 5. P. 2071–2077. https://doi.org/10.1021/cm010771h.
  33. Леонтьева Г.В. // ЖПХ. 1997. Т. 70. № 10. С. 1615–1619.
  34. Feng Q., Kanoh H., Ooi K. // J. Mater. Chem. 1999. Vol. 9. N 2. P. 319–333. https://doi.org/10.1039/a805369c.
  35. Golden D.C., Dixon J.B., Chen C.C. // Clays Clay Miner. 1986. Vol. 34. P. 511–520. https://doi.org/10.1346/CCMN.1986.0340503.
  36. Леонтьева Г.В., Вольхин В.В., Бахирева О.И. Патент RU 2094115 C1. 1997.
  37. Ворошилов Ю.А., Логунов М.В., Прокофьев Н.Н., Землина Н.П. // Радиохимия. 2003. Т. 45. № 1. С. 62–65.
  38. Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М.: Химия, 1970. 360 с.
  39. Шарло Г. Методы аналитической химии. М.: Химия, 1965. 976с.
  40. Карлин Ю.В., Чуйков В.Ю., Адамович Д.В., Сластенников Ю.Т., Ильин В.А., Суменко А.В., Флит В.Ю., Дмитриев С.А., Соболев И.А. // Атом. энергия. 2001. Т. 90. Вып. 1. С. 6–69.
  41. Адамович Д.В., Арустамов А.Э., Гелис В.М., Кононенко О.А., Милютин В.В. Патент RU 2263536C1. 2004. Oпубл. 10.11.2005 // Б.И. 2005. № 31.
  42. Савкин А.Е. // Вопр. атом. науки и техники. Сер.: Материаловедение и новые материалы. 2019. Вып. 3 (99). С. 39–50.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Derivatogram of a sample of mixed Mn(III, IV) oxide.

下载 (94KB)
3. Fig. 2. Dependence of Kd 90Sr on the concentration of sodium ions on sorbents: 1 – Mn(III, IV) oxide, 2 – Na-A zeolite, 3 – Tokem-100 sulfocationite.

下载 (67KB)
4. Fig. 3. Dependence of Kd 90Sr on the concentration of calcium ions on sorbents: 1 – Mn(III, IV) oxide, 2 – Tokem-100 sulfocationite, 3 – Na-A zeolite.

下载 (62KB)

版权所有 © Russian Academy of Sciences, 2024