Influence of ionizing radiation on physicochemical and operational properties of diesel fuel with the added toluene

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Radiation resistance of diesel fuel with the addition of various percentages of toluene was studied. The experiments were carried out for a long time to study the postpolymerization processes. The kinetics of processes during irradiation of pure diesel fuel was studied at the temperature T = 20°C and dose rate P = 0.07 Gy/s in the range of absorbed doses D = 15–150 kGy, and a mixture of toluene with diesel fuel was irradiated within the absorbed dose range D = 24–90 kGy at a toluene concentration of 1. 3. and 5 vol %. Analysis by gas chromatography–mass spectrometric (GC/MS) was performed, and the density, viscosity, and iodine number of the diesel fuel before and after irradiation at various absorbed doses were determined. The kinetics of postpolymerization processes after the end of irradiation shows that the rate of the process and its share in the total polymerization depend on the irradiation time, initial mixture density, and dose. By adding additives (antirads), one can choose the composition of diesel fuel that will better withstand radiation exposure. It is necessary to find the optimal concentration of toluene in the composition of diesel fuel, at which the viscosity and density will not change with an increase in the absorbed dose.

Texto integral

Acesso é fechado

Sobre autores

L. Jabbarova

Institute of Radiation Problems, National Academy of Sciences of Azerbaijan

Autor responsável pela correspondência
Email: clala@mail.ru
Azerbaijão, Baku, AZ1143

I. Mustafaev

Azerbaijan University of Architecture and Construction

Email: clala@mail.ru
Azerbaijão, Baku, AZ1143

A. Mirzaeva

Institute of Radiation Problems, National Academy of Sciences of Azerbaijan

Email: clala@mail.ru
Azerbaijão, Baku, AZ1143

N. Ibadov

Institute of Radiation Problems, National Academy of Sciences of Azerbaijan

Email: clala@mail.ru
Azerbaijão, Baku, AZ1143

Bibliografia

  1. Джаббарова Л.Ю., Мустафаев И.И., Ибадов Н.А. // ЖПС. 2022. Т. 89. № 3. С. 315–322.
  2. Jabbarova L.Y., Mustafayev I.I., Akperov R.Y., Mirzayeva A.S. // J. Radiat. Res. 2022. Vol. 9. N 1. P. 58–63.
  3. Jabbarova L.Y., Mustafayev I.I. // Radiochemistry. 2021. Vol. 63. N 3. P. 373.
  4. Jabbarova L.Y., Mustafayev I.I. // High Energy Chem. 2021. Vol. 55. P. 37.
  5. Джаббарова Л.Ю., Мустафаев И.И. // ЖПС. 2018. Т. 85. № 4. C. 634.
  6. Jabbarova L.Y., Mustafayev I.I. // J. Energy, Environ. Chem. Eng. USA. 2017. vol. 2. № 4. P. 41.
  7. Джаббарова Л.Ю., Мустафаев И.И., Meликова С.З. // Междунар. журн. прикл. и фундам. исслед. 2017. №7 (2). C. 239.
  8. Jabbarova L.Y., Ibadov N.A., Mustafayev I.I., Mirzayeva A.S. // ІV Int. Scientific and Practical Conf. “Science and Technologies.” Kazakhstan, 2022. P. 135–139.
  9. Ezeldin M., Younis F., Elamin A.A., Suliman Y.S., Sheshko T.F., Abdallah N.E., Cherednichenko A.G. // J. Mex. Chem. Soc. 2021. Vol. 15. P. 31.
  10. Ezeldin M., Ishak C.Y., Eljack M.. Milad M. // Chem. Methodol. 2018. Vol. 3. P. 64–74.
  11. Ezeldin M., Masaad A.M., Abualreish M.J.A., Ishak C.Y. // Orient. J. Chem. 2017. Vol. 33. P. 2085–2089.
  12. Филатов И.Е., Первова М.Г. // Горение и плазмохимия. 2011. T. 9. № 3. C. 227.
  13. Пономарев А.В., Холодкова Е.М., Ершов Б.Г. // Радиац. физика и химия. 2012. Т. 81. № 9. С. 1440.
  14. Zannis T.C., Hountalas D.T., Papagiannakis R.G. // Energy Fuels. 2007. Vol. 21. P. 2642–2654.
  15. Luana D.S., Andrade W.A.P., Ivone C.С., Celina M.S. // Radiat. Phys. Chem. 2015. Vol. 115. P. 196–201.
  16. Osman M.E., Sheshko T.F., Dipheko T.D., Abdallah N.E., Hassan Ishak E.A. // Int. J. Green Energy. 2021. Vol. 18. P. 1396–1404.
  17. Yasin M.H.M., Mamat R., Yusop A.F., Rahim R., Aziz A., Shah L.A. // Procedia Eng. 2013. Vol. 53. P. 701–706.
  18. Zaykin Y.A., Zaykina R.F., Silverman J. // Radiat. Phys. Chem. 2004. Vol. 69. № 3. P. 229–238.
  19. Zaykin Y.A., Zaykina R.F., Mirkin G. // Radiat. Phys. Chem. 2003. Vol. 67. P. 305–309.
  20. Милинчук В.К., Клиншпонт Э.Р., Тупиков В.И. Основы радиационной стойкости органических материалов. М.: Энергоатомиздат, 1994. 256 c.
  21. Фельдиак Г. Радиационная химия углеводородов / Пер с англ. А.М. Кабакчи. М.: Энергоатомиздат, 1985. 303 c.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Changes in density (a), viscosity (b) and iodine numbers (c) of diesel fuel immediately after irradiation and 4 months after irradiation at different absorbed doses. T = 20°C, P = 0.07 Gy/s.

Baixar (155KB)
3. Fig. 2. Effect of gamma irradiation on the density and viscosity of a toluene-diesel mixture at different concentrations immediately after gamma irradiation. T = 20°C, P = 0.07 Gy/s.

Baixar (86KB)
4. Fig. 3. Time (months) dependence of the post-radiation effect (a – viscosity, b – density) of diesel fuel and a mixture with 1% toluene. D = 72 kGy.

Baixar (76KB)
5. Fig. 4. Chromatograms of a diesel fuel–toluene mixture at a toluene concentration of 1%: a – N1-Rad0, original diesel fuel; b – N2-Rad, irradiated diesel fuel; c – N37.1-Rad0 – non-irradiated diesel fuel with toluene; d – N47.1-Rad – irradiated diesel fuel with 1% toluene.

Baixar (278KB)
6. Fig. 5. Concentration (%) of aromatic hydrocarbons (a – naphthalene; b – toluene, benzene and isopropylbenzene) in diesel fuel: initial, immediately after irradiation and 2 months after gamma irradiation. T = 20°C, P = 0.07 Gy/s.

Baixar (95KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024