Specific features of reduction of plutonium(VI) ozonation products in solutions of various nature alkalis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The decomposition processes of plutonium hydroxo compounds formed under ozonation conditions in MOH (M = Li, Na, K) solutions of various concentrations were studied by UV–Vis spectroscopy using a modified nonlinear least squares method. The influence of the nature of alkali on the kinetics and mechanisms of spontaneous reduction of alkaline solutions of hydroxo compounds of plutonium(VII) was discovered. This influence and the “anomalies” in the UV–Vis spectra for ozonized plutonium solutions are associated with the presence in the systems of iron compounds in the form of impurities in commercially available LiOH, NaOH and KOH (analytically pure, chemically pure, and ultrapure grade). Even trace amounts of impurities in alkaline solutions of plutonium compounds change the mechanisms of their reduction through the active participation of iron in redox processes. They include the oxidation of iron to ferrate(VI) ions FeO42–, followed by reduction to Fe3+, probably through the stage of formation of an intermediate with a hydroxo derivative of plutonium(VI). As a result of the analysis of large arrays of spectral data, the spectra of individual components corresponding to compounds of plutonium(VI, VII) and iron (VI) were isolated.

Texto integral

Acesso é fechado

Sobre autores

D. Pankratov

Moscow State University

Autor responsável pela correspondência
Email: pankratov@radio.chem.msu.ru

Department of Chemistry

Rússia, Leninskie gory 1, str. 3, Moscow, 119991

A. Romanchuk

Moscow State University

Email: pankratov@radio.chem.msu.ru

Department of Chemistry

Rússia, Leninskie gory 1, str. 3, Moscow, 119991

S. Kalmykov

Moscow State University

Email: pankratov@radio.chem.msu.ru

Department of Chemistry

Rússia, Leninskie gory 1, str. 3, Moscow, 119991

V. Dolzhenko

Moscow State University

Email: pankratov@radio.chem.msu.ru

Department of Chemistry

Rússia, Leninskie gory 1, str. 3, Moscow, 119991

Yu. Kiselev

Moscow State University

Email: pankratov@radio.chem.msu.ru

Department of Chemistry

Rússia, Leninskie gory 1, str. 3, Moscow, 119991

Bibliografia

  1. Chan W.T K., Wong W.-T. // Polyhedron. 2013. Vol. 52. P. 43.
  2. Johnson D.A., Nelson P.G. // Found. Chem. 2018. Vol. 20. P. 15.
  3. Ma Sh., Zhao L., Li Sh., Ga T., Peng F. // Phys. Chem. Chem. Phys. 2023. Vol. 25. P. 6726.
  4. Kiselev Yu.M. // Russ. Chem. Rev. 2009. Vol. 78. P. 1.
  5. Pyykkö P. // EPJ Web of Conf. 2016. Vol. 131. AN.01001.
  6. Umemoto K., Saito S. // J. Phys. Soc. Jpn. 1996. Vol. 65. P. 3175.
  7. Meek T.L., Allen L.C. // Chem. Phys. Lett. 2002. Vol. 362. N 5–6. P. 362.
  8. Cao C., Vernon R.E., Schwarz W.H.E., Li J. // Front. Chem. 2021. Vol. 8. P. 813.
  9. Mamykin A.V., Masyagutova G.A., Ostakhov S.S., Khursan S.L. // J. Solid State Chem. 2020. Vol. 290. Article 121554.
  10. Graham L., Graudejus O., Jha N.K., Bartlett N. // Coord. Chem. Rev. 2000. Vol. 197. N 1. P. 321.
  11. Selig H., Claassen H.H., Chernick C.L., Malm J.G., Huston J.L. // Science. 1964. Vol. 143. P. 1322.
  12. Wang G., Zhou M., Goettel J.T., Schrobilgen G.G., Su J., Li J., Schlöder T., Riedel S. // Nature. 2014. Vol. 514. P. 475.
  13. Düllmann Ch.E., Brüchle W., Dressler R., Eberhardt K., Eichler B., Eichler R. et al. // Nature. 2002. Vol. 418. P. 859.
  14. Chen W., Shimada S., Tanaka M. // Science. 2002. Vol. 295. P. 308.
  15. Dedushenko S.K., Kholodkovskaya L.N., Perfiliev Yu.D., Kiselev Yu.M., Saprykyn A.A., Kamozin P.N., Lemesheva D.G. // J. Alloys Comp. 1997. Vol. 262–263. P. 78.
  16. Pankratov D.A. // Inorg. Mater. 2014. Vol. 50. P. 82.
  17. Nikonov M.V., Myasoedov B.F. // Radiochemistry. 2010. Vol. 52. P. 17.
  18. Никонов М.В., Гоголев А.В., Тананаев И.Г., Мясоедов Б.Ф. // Радиохимия. 2004. Т. 46. № 4. С. 312.
  19. Tananaev I.G., Nikonov M.V., Myasoedov B.F., Clark D.L. // J. Alloys Comp. 2007. Vol. 444. P. 668.
  20. Nikonov M.V., Myasoedov B.F. // Radiochemistry. 2014. Vol. 56. P. 227.
  21. Kрот Н.Н., Гельман А.Д., Мефодьева М.П., Шилов В.П., Перетрухин В.Ф., Спицын В.И. Семивалентное состояние нептуния, плутония, америция / Под ред. В.С. Колтунова. М.: Наука, 1977. 149 с.
  22. Крот Н.Н., Гельман А.Д., Захарова Ф.А., Перетрухин В.Ф., Пикаев А.К. // Радиохимия. 1972. Т. 14. № 3. С. 890.
  23. Tsushima S. // J. Phys. Chem. B. 2008. Vol. 112. N 41. P. 13059.
  24. Huang W., Xu W.-H., Schwarz W.H.E., Li J. // Inorg. Chem. 2016. Vol. 55. N9. P. 4616.
  25. Lu J.‐B., Jiang X.‐L., Wang J.‐Q., Hu H.-Sh., Schwarz W.H.E., Li J. // J. Comp. Chem. 2023. Vol. 44. N 3. P. 190.
  26. Kovács A. // Struct. Chem. 2020. Vol. 31. N 4. P. 1247.
  27. Милюкова М.С., Гусев Н.И., Сентюрин И.Г., Скляренко И.С. Аналитическая химия плутония. М.: Наука. 1965. 455 с.
  28. Varlashkin P.G. PhD Thesis. Knoxville: Univ. of Tennessee, 1985. 120 p.
  29. Nitshe H., Roberts R., Becraft K., Prussin T., Keeney D., Carpenter S.A., Hobart D.E. Report LA-13017-MS, UC-802. US Department of Energy, 1995.
  30. Sinkov S.I. Report PNNL-16844, WTP-RPT-165. US Department of Energy, 2007.
  31. Peretrukhin V.F., Shilov V.P., Pikaev A.K. Contract DE-ACOS-87RL10930, WHC-EP-0817, UC-601. US Department of Energy, 1995.
  32. Тананаев И.Г., Розов С.П., Миронов В.С. // Радиохимия. 1992. Т. 34. № 3. С. 88.
  33. Antonio M.R., Williams C.W., Sullivan J.A., Skanthakumar S., Hu Y.J., Soderholm L. // Inorg. Chem. 2012. Vol. 51. N 9. P. 5274.
  34. Shilov V.P., Gogolev A.V., Fedosseev A.M., Ershov B.G. // Russ. Chem. Bull. 2016. Vol. 65. P. 2351.
  35. Fedosseev A.M., Bessonov A.A., Shilov V.P. // Radiochim. Acta. 2022. Vol. 110. N 12. P. 955.
  36. Долженко В.Д., Беззубов С.И., Киселев Ю.М. // ЖАХ. 2012. Т. 67. № 2. С. 176.
  37. Shashilov V.A., Lednev I.K. // Chem. Rev. 2010. Vol. 110. P. 5692.
  38. Мефодьева М.П., Крот Н.Н. Соединения трансурановых элементов. М.: Наука, 1987. 302 с.
  39. The chemistry of the Actinide and Transactinide Elements / Eds L.R. Morss, N.M. Edelstein, J. Fuger, J.J. Katz. Dordrecht: Springer, 2011. 4th ed. 4514 p.
  40. Пикаев А.К., Шилов В.П., Гоголев А.В. // Успехи химии. 1997. Т. 66. № 9. С. 845.
  41. Pikaev A.K., Gogolev A.V., Shilov V.P. // Radiat. Phys. Chem. 1999. Vol. 56. P. 483.
  42. Elbergali A., Nygren J., Kubista M. // Anal. Chim. Acta. 1999. Vol. 379. P. 143.
  43. Clark D.L., Hecker S.S., Jarvinen G.D., Neu M.P. Plutonium // The Chemistry of the Actinide and Transactinide Elements / Eds. L.R. Morss, N.M. Edelstein, J. Fuger. Springer, 2006. P. 813.
  44. Reilly S.D., Neu M.P. // Inorg. Chem. 2006. Vol. 45. P. 1839.
  45. Тананаев И.Г. // Радиохимия. 1989. Т. 31. № 1. С. 46.
  46. Perfiliev Yu.D., Benko E.M., Pankratov D.A., Sharma V.K., Dedushenko S.K. // Inorg. Chim. Acta. 2007. Vol. 360. N 8. P. 2789.
  47. Шилов В.П., Гоголев А.В. // ЖОХ. 2010. Т. 80. № 5. С. 725.
  48. Sharma V.K., Mácová Z., Bouzek K., Millero F.J. // J. Chem. Eng. Data. 2010. Vol. 55. N 12. P. 5594.
  49. Киселев Ю.М., Панкратов Д.А., Езерская Н.А., Киселева И.Н., Шундрин Л.А., Попович М.П. // ЖНХ. 1994. Т. 39. № 8. C. 1340.
  50. Киселев Ю.М., Панкратов Д.А., Шундрин Л.А., Киселева И.Н. // ЖНХ. 1996. Т. 41. № 12. C. 2069.
  51. Pankratov D.A., Kiselev Yu.M., Komozin P.N. // Russ. J. Inorg. Chem. 2011. Vol. 56. N 11. P. 1794.
  52. Pankratov D.A., Kiselev Y.M. // Russ. J. Inorg. Chem. 2009. Vol. 54. N 9. P. 1451.
  53. Shilov V.P., Ershov B.G. // Radiochemistry. 2020. Vol. 62. P. 433.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Changes in the absorption spectra for plutonium hydroxocomplexes spontaneously recovering after ozonation (at CPu = 1.5 × 10–3 M) in a 5 M NaOH solution, recorded at intervals of 3.6 min (a), and the optical density of solutions at 510 and 605 nm (b) over time.

Baixar (195KB)
3. Fig. 2. Changes in the absorption spectra for plutonium hydroxocomplexes spontaneously recovering after ozonation (at CPu = 2.4 × 10–3 M) in a 2 M LiOH solution, recorded at intervals of ~4 min (a), and the optical density of solutions at 510 and 605 nm (b) over time.

Baixar (260KB)
4. Fig. 3. Results of mathematical decomposition of a series of absorption spectra for solutions of plutonium hydroxocomplexes in NaOH (CPu = 1.5 × 10–3 M, CNaOH = 5 M) spontaneously recovering after ozonation into spectra of individual components (a) and changes in the content of components over time (b).

Baixar (193KB)
5. Fig. 4. Results of mathematical decomposition of a series of absorption spectra for solutions of plutonium hydroxocomplexes in LiOH (CPu = 2.4 × 10–3 M, ClOH = 2 M) spontaneously recovering after ozonation into spectra of individual components (a) and changes in the content of components over time (b).

Baixar (170KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024