Cesium-137 extraction from nitric acid media with calix[4]arene-crown-6 ether solutions in bis(tetrafluoropropyl) carbonate
- Authors: Aleksandrov T.S.1,2, Babitova E.S.1,2, Blokhin A.N.3, Brechalov A.А.1,2, Eremin V.V.2, Ermolenko Y.E.2, Karavan M.D.1,2, Kenf E.V.1, Maltseva T.V.1, Ostras' A.S.2, Timoshenko V.V.2, Tkachenko L.I.1, Smirnov I.V.1,2
-
Affiliations:
- Khlopin Radium Institute
- St. Petersburg State University
- Institute of Macromolecular Compounds, Russian Academy of Sciences
- Issue: Vol 67, No 2 (2025)
- Pages: 119-134
- Section: Articles
- URL: https://rjsvd.com/0033-8311/article/view/689559
- DOI: https://doi.org/10.31857/S0033831125020038
- ID: 689559
Cite item
Abstract
The physicochemical and extraction properties of calixarene crown ethers: 1,3-alt-bis(octyloxy)calix[4]arene-crown-6 (II) and its derivatives with o-phenylene (I), methylenepropoxy (IV) and methylene(2,2,3,3-tetrafluoropropoxy) (III) substituents in the crown ether ring, were studied. Solutions of compound II in bis(2,2,3,3-tetrafluoropropyl) carbonate (BK-1) effectively extract cesium from 3 mol/L nitric acid already at a concentration of 0.001 mol/L. The introduction of substituents into the crown ether ring significantly reduces the efficiency of cesium extraction, but increases the solubility of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate. The data on the solubility of calixarene crown ethers in water and 3 mol/L nitric acid, the distribution between the organic and aqueous phases, and the rate of interaction with nitric acid were obtained. Calixarene crown ether I with an o-phenylene substituent reacts with 3 mol/L nitric acid approximately 2 times faster than dibenzo-21-crown-7. The other calixarene crown ethers studied do not react with nitric acid under the similar conditions. Quantum chemical modeling, including optimization of the structure geometry and calculation of vibrational frequencies, was performed for the molecules of calixarene crown ethers, DB21C7 and their complexes with the cesium cation. The calculated ΔG0 values for the complexation of ligands with the cesium cation correlate well with the experimental lgDCs (except for compound III with a fluorinated substituent). Solutions of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate exhibit selectivity for cesium and do not extract 152Eu and 241Am from nitric acid media.
Full Text

About the authors
T. S. Aleksandrov
Khlopin Radium Institute; St. Petersburg State University
Email: mkaravan@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034
E. S. Babitova
Khlopin Radium Institute; St. Petersburg State University
Email: mkaravan@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034
A. N. Blokhin
Institute of Macromolecular Compounds, Russian Academy of Sciences
Email: mkaravan@khlopin.ru
Russian Federation, Bolshoi pr. V.O. 31, St. Petersburg, 199004
A. А. Brechalov
Khlopin Radium Institute; St. Petersburg State University
Email: mkaravan@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034
V. V. Eremin
St. Petersburg State University
Email: mkaravan@khlopin.ru
Russian Federation, Universitetskaya nab. 7–9, St. Petersburg, 199034
Yu. E. Ermolenko
St. Petersburg State University
Email: mkaravan@khlopin.ru
Russian Federation, Universitetskaya nab. 7–9, St. Petersburg, 199034
M. D. Karavan
Khlopin Radium Institute; St. Petersburg State University
Author for correspondence.
Email: mkaravan@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034
E. V. Kenf
Khlopin Radium Institute
Email: mkaravan@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021
T. V. Maltseva
Khlopin Radium Institute
Email: mkaravan@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021
A. S. Ostras'
St. Petersburg State University
Email: mkaravan@khlopin.ru
Russian Federation, Universitetskaya nab. 7–9, St. Petersburg, 199034
V. V. Timoshenko
St. Petersburg State University
Email: mkaravan@khlopin.ru
Russian Federation, Universitetskaya nab. 7–9, St. Petersburg, 199034
L. I. Tkachenko
Khlopin Radium Institute
Email: mkaravan@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021
I. V. Smirnov
Khlopin Radium Institute; St. Petersburg State University
Email: mkaravan@khlopin.ru
Russian Federation, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034
References
- Стратегия развития ядерной энергетики России. М.: Росатом, 2023. 64 с.
- Логунов М.В., Ворошилов Ю.А., Бабаин В.А., Скобцов А.С. // Радиохимия. 2020. Т. 62. № 6. С. 463.
- Grüner B., Rais J., Seluckỳ P., Lučaníková M. // Boron Science: New Technologies and Applications / Ed. N.S. Hosmane. CRC, 2016. P. 463.
- Ворошилов Ю.А., Логунов М.В., Смольянихин К.В., Яковлев Н.Г. // Вопр. радиац. безопасности. 2013. № 2. P. 23.
- Кощеева А.М., Родин А.В., Ананьев А.В. // Радиохимия. 2023. Т. 65. № 4. С. 303–309.
- Smirnov I.V., Karavan M.D., Kenf E.V., Tkachenko L.I., Timoshenko V.V., Brechalov A.A. et al. // Solvent Extr. Ion Exch. 2022. Vol. 40. N 7. P. 756.
- Mátel Ľ., Bilbao T. // J. Radioanal. Nucl. Chem. 1989. Vol. 137. N 3. P. 183.
- Ripon R.I., Begum Z.A., Rahman I.M.M. // Microchem. J. 2024. Vol. 199. Article 110161.
- Ungaro R., Casnati A., Ugozzoli F., Pochini A., Dozol J.-F., Hill C., Rouquette H. // Angew. Chem. Int. Ed. Engl. 1994. Vol. 33. P. 1506.
- Roach B.D., Neil W.J., Duncan N.C., Laetitia H. // Solvent Extr. Ion Exch. 2014. Vol. 33. N 2. P. 134.
- Simonnet M., Miyazaki Y., Suzuki S., Yaita V. // Solvent Extr. Ion Exch. 2019. Vol. 37. P. 81.
- Wang J., Zhuang S. // Nucl. Eng. Technol. 2020. Vol. 52. N 2. P. 328.
- Kumar V., Sharma J.N., Achuthan P.V., Hubli R.C. // J. Radioanal. Nucl. Chem. 2014. Vol. 299. P. 1547.
- Khan P.N., Pahan S., Sengupta A., Tessy V., Singhadeb A.K., Ali S.M. // J. Mol. Liq. 2024. Vol. 397. Article 124064.
- Jagasia P., Mohapatra P.K., Dhami P.S., Patil A.B., Adya V.C., Sengupta A. et al. // J. Radioanal. Nucl. Chem. 2014. Vol. 302. N 2. P. 1087.
- Wang J., Chen J., Shan J. // Solvent Extr. Ion Exch. 2015. Vol. 33. P. 249.
- Zhang A., Hu Q. // Sep. Sci. Technol. 2017. Vol. 52. N 10. P. 1670.
- Patra K., Sengupta A., Mishra R.K., Mittal V.K., Valsala T.P., Kaushik C.P. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 3. P. 1473.
- Babain V., Alyapyshev M., Еkberg С., Todd T. // Solvent Extr. Ion Exch. 2023. Vol. 41. N 3. P. 253.
- Percec V., Bera T.K., De B.B., Sanai Y., Smith J., Holerca M.N., Barboiu B. // J. Org. Chem. 2001. Vol. 66. P. 2104.
- Adamo C., Barone V. // J. Chem. Phys. 1999. Vol. 110. N 13. P. 6158.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297.
- Leininger T., Nicklass A., Kuechle W., Stoll H., Dolg M., Bergner A. // Chem. Phys. Lett. 1996. Vol. 255. P. 274.
- Caldeweyher E., Bannwarth C., Grimme S. // J. Chem. Phys. 2017. Vol. 147. Article 034112.
- Barone V., Cossi M. // J. Phys. Chem. A. 1998. Vol. 102. N 11. P. 1995.
- Chemcraft–graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com
- Smirnov I.V., Stepanova E.S., Tyupina M.Y., Ivenskaya N.M., Zaripov S.R., Kleshnina S.R. et al. // Macroheterocycles. 2017. Vol. 10. N 2. P. 196.
- Sharma J.N., Kumar A., Kumar V., Pahan S., Janardanan C., Tessi V., Wattal P.K. // Sep. Purif. Technol. 2014. Vol. 135. P. 176.
- Jagasia P., Ansari S.A., Raut D.R., Dhami P.S., Gandhi P.M., Kumar A., Mohapatra P.K. // Sep. Purif. Technol. 2016. Vol. 170. P. 208.
- Raut D.R., Mohapatra P.K., Choudhary M.K., Nayak S.K. // J. Membr. Sci. 2013. Vol. 429. P. 197.
- Patra K., Sadhu B., Sengupta A., Patil C.B., Mishra R.K., Kaushik C.P. // RSC Adv. 2021. Vol. 11. P. 21323.
- Jagasia P., Mohapatra P.K., Dhami P.S., Gandhi P.M., Wattal P.K. // Sep. Sci. Technol. 2014. Vol. 49. P. 2151.
Supplementary files
