Theory of Anisotropic Layered Beams in Spatial Statement. Updating the Theoretical Heritage of Prof. P.A. Zhilin
- Authors: Gorynin G.L.1, Gorynin A.G.2
-
Affiliations:
- Surgut State University
- Novosibirsk State University
- Issue: Vol 89, No 2 (2025)
- Pages: 310-347
- Section: Articles
- URL: https://rjsvd.com/0032-8235/article/view/686781
- DOI: https://doi.org/10.31857/S0032823525020098
- EDN: https://elibrary.ru/ILSCSQ
- ID: 686781
Cite item
Abstract
A theory of deformation of layered composite beams is developed based on the application of the asymptotic splitting method to a spatial problem of elasticity theory. A system of four ordinary differential equations with constant coefficients for three unknown macrodisplacements functions and an unknown function of the twist angle of the beam cross section is obtained. The type and order of these equations depend on the number of the asymptotic approximation. The coefficients of the specified system are integral characteristics of auxiliary boundary value problems in the cross section of the beam. The theory presented contains a system of four coupled equations, i.e. in the general case, the processes of bending in two planes, tension-compression and torsion are coupled. The theory obtained includes as a special case the following theories: the classical Bernoulli–Euler beam theory; the Timoshenko beam theory; the Saint-Venant free torsion theory; the Vlasov theory of thin-walled beams of open cross section.
About the authors
G. L. Gorynin
Surgut State University
Author for correspondence.
Email: gorynin@list.ru
Russian Federation, Surgut
A. G. Gorynin
Novosibirsk State University
Email: a.gorynin@g.nsu.ru
Russian Federation, Novosibirsk
References
- Chen H., Yu W., Capellaro M. A critical assessment of computer tools for calculating composite wind turbine blade properties // Wind Energy, 2010, vol. 13, no. 6, pp. 497–516.
- Librescu L., Song. O. Thin-Walled Composite Beams: Theory and Application. Dordrecht: Springer, 2006. 607 p.
- Carrera E., Giunta G., Petrolo M. Beam Structures: Classical and Advanced Theories. Wiley&Sons, 2011. 208 p.
- Carrera E., Elishakoff I., Petrolo M. Who needs refined structural theories? // Compos. & Struct., 2021, vol. 264, pp. 113671.
- Murthy M., Roy Mahapatra D., Badarinarayana K., Gopalakrishnan S. A refined higher order finite element for asymmetric composite beams // Compos. Struct., 2005, vol. 67, no. 1, pp. 27–35.
- Ferreira A.J.M., Roque C.M.C., Jorge R.M.N. Analysis of composite plates by trigonometric shear deformation theory and multiquadrics // Comput.&Struct., 2005, vol. 83, no. 27, pp. 2225–2237.
- Di Sciuva M., Tessler. A. Refinement of Timoshenko Beam Theory for Composite and Sandwich Beams Using Zigzag Kinematics. 2007. 45 p.
- Obraztsov I.F., Nerubailo B.V., Andrianov I.V. Asymptotic Methods in Mechanics of Thin-walled Structures. Moscow: Mashinostroenie, 1991. 415 p. (in Russian)
- Kolpakov A.G. The asymptotic theory of thermoelastic beams // J. Appl. Mech. Tech. Phys., 1995, vol. 36, pp. 756763.https://doi.org/10.1007/BF02369290
- Aghalovyan L., Aghalovyan M. On asymptotic theory of beams, plates and shells // Curved&Layered Struct., 2016, vol. 3, no. 1, pp. 74–81.
- Nazarov S.A. Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates. Vol. 1. Novosibirsk: Nauchnaya Kniga, 2001. 408 p. (in Russian)
- Andrianov I., Awrejcewicz J., Manevitch L. Asymptotical Mechanics of Thin-Walled Structures. Springer Sci.&Business Media, 2013.
- Buannic N., Cartraud P. Higher-order asymptotic model for a heterogeneous beam, including corrections due to end effects // 41st Structures, Structural Dynamics, and Materials Conf. & Exhibit., 2000. P. 1495.
- Jeong J., Kim J.S., Kang Y.J., Cho M. A cross-sectional analysis of composite beams based on asymptotic framework // J. of Mech. Sci.&Technol., 2012, vol. 26, no. 1, pp. 161–172.
- Kim J.S., Cho M., Smith E.C. An asymptotic analysis of composite beams with kinematically corrected end effects // Int. J. of Solids&Struct., 2008, vol. 45, no. 7–8, pp. 1954–1977.
- Berdichevsky V.L. Variational Principles of a Mechanics of a Continuous Medium. Moscow: Nauka, 1983. 448 p.
- Butenko Yu.I. Variational Asymptotic Methods for Construction of Nonclassical Methods for the Analysis of Rods and Plates. Kazan: Novoe Znanie, 2001. 320 p.
- Hodges D.H. Nonlinear composite beam theory // Amer. Inst. of Aeron.&Astron., 2006. 317 p.
- Yu W., Hodges D.H. Generalized Timoshenko theory of the variational asymptotic beam sectional analysis // J. of the Amer. Helicopt. Soc., 2005, vol. 50, no. 1, pp. 46–55.
- Yu W. et al. A generalized Vlasov theory for composite beams // Thin-Walled Struct., 2005, vol. 43, no. 9, pp. 1493–1511.
- Gorynin G.L. Longitudinal-transverse bending of layered beams in a three-dimensional formulation // J. of Appl. Mech.&Techn. Phys., 2004, vol. 45, no. 6, pp. 885–893.
- Gorynin G.L., Nemirovsky Yu.V. Spatial Problems of Bending and Torsion of Layered Structures. Method of Asymptotic Splitting. Novosibirsk: Nauka, 2004. 408 p. (in Russian)
- Gorynin G.L., Nemirovskii Y.V. Deformation of laminated anisotropic bars in the three-dimensional statement 1. Transverse-longitudinal bending and edge compatibility condition // Mech. of Compos. Mater., 2009, vol. 45, pp. 257–280.
- Yankovskii A.P. Refinement of the asymptotic expansions when solving the spatial problem of the bending and twisting of composite bars // JAMM, vol. 79, no. 5, pp. 475–492.
- Gorynin G.L., Nemirovskii Y.V. GN-theory for bending of composite beams. General theory. Vol. 1 // Izv. vuzov. Construction, 2012, vol. 6, pp. 312.
- Gorynin A.G., Gorynin G.L., Golushko S.K. Study of restrained torsion of thin-walled open-section beams using the asymptotic splitting method // J. of Appl. Mech.&Techn. Phys., 2024, vol. 65, no. 3, pp. 502–518.
- Zhilin P.A. Rational Continuum Mechanics. St. Petersburg: Politech. Univ. Pub., 2012. 584 p.
- Vlasov V.Z. Thin-Walled Elastic Rods. Moscow: Gosstroyizdat, 1962. 475 p. (in Russian)
- Umansky A.A. Torsion and Bending of Thin-Walled Aircraft Structures. Moscow: Oborongiz, 1939. 112 p. (in Russian)
- Chandra R., Chopra I. Experimental and theoretical analysis of composite I-beams with elastic couplings // AIAA J., 1991, vol. 29, no. 12, pp. 2197–2206.
- Gorynin A.G., Gorynin G.L., Golushko S.K. Modeling of restrained torsion of composite beams of solid and closed cross sections// Izv. vuzov. Construction, 2024, vol. 10. pp. 525.https://doi.org/10.32683/0536-1052-2024-790-10-5-25
Supplementary files
