Device for Polarization of Polymer Films in the Field of a Barrier Type Surface Corona Discharge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A device for the polarization of polymer films in the electric field of a barrier-type surface corona discharge is described, and the features of its operation are considered. The possibility of obtaining a uniform distribution of the potential of charges deposited on the polymer surface is demonstrated. Using the method of X-ray phase analysis, it is shown that the proposed method of polarization makes it possible to create an electric field on the surface of a composite film of polyvinylidene fluoride + PZT-ceramic, the intensity of which is sufficient to initiate the phase transition α → β in the polymer.

About the authors

I. A. Bakulin

Samara Branch of the Lebedev Physical Institute, Russian Academy of Sciences

Email: anton@fian.smr.ru
443011, Samara, Russia

S. I. Kuznetsov

Samara Branch of the Lebedev Physical Institute, Russian Academy of Sciences

Email: anton@fian.smr.ru
443011, Samara, Russia

A. S. Panin

Samara Branch of the Lebedev Physical Institute, Russian Academy of Sciences

Email: anton@fian.smr.ru
443011, Samara, Russia

E. Yu. Tarasova

Samara Branch of the Lebedev Physical Institute, Russian Academy of Sciences

Author for correspondence.
Email: anton@fian.smr.ru
443011, Samara, Russia

References

  1. Ameduri B. // Chem. Rev. 2009. V. 109. № 12. P. 6632. https://doi.org/10.1021/cr800187m
  2. Wenjing J., Hua Deng, Cong Guo, Chengxiao Sun, Xuan Guo, Feng Chen, Qiang Fu // Composites Part A. 2019. V. 118. P. 336. https://doi.org/10.1016/j.compositesa.2019.01.011
  3. Peng Han, Shengli Pang, Jingbo Fan, Xiangqian Shen, Tiezheng Pan // Sensors and Actuators A. 2013. V. 204. P. 74. https://doi.org/10.1016/j.sna.2013.10.011
  4. Sencadas V., Lanceros-Méndez S., Mano J.F. // Thermochimica Acta. 2004. V. 424. P. 201. https://doi.org/10.1016/j.tca.2004.06.006
  5. Shichen Deng, Jiale Yuan, Yuli Lin, Xiaoxiang Yu, Dengke Ma, Yuwen Huang, Rencai Ji, Guangzu Zhang, Nuo Yang // Nano Energy. 2021. V. 82. P. 105749 (7). https://doi.org/10.1016/j.nanoen.2021.105749
  6. Hill R.A., Knoesen A., Mortazavi Corona M.A. // Appl. Phys. Lett. 1994. V. 65. Iss. 14. P. 1733. https://doi.org/10.1063/1.112899
  7. Davis G.T., McKinney J.E., Broadhurst M.G., Roth S.C. // J. Appl. Phys. 1978. V. 49. № 10. P. 4998. https://doi.org/10.1063/1.324446
  8. Von Seggern Heinz, Tsuey T. Wang // Patent US 4512941. Apr. 23, 1985.
  9. Ohwaki J., Yamazaki H., Kitayama T. // J. Appl. Phys. 1981. V. 52. № 11. P. 6856. https://doi.org/10.1063/1.328678
  10. Бойцов В.Г., Тазенков Б.А., Скугарев А.С., Перепелица Л.А. А.с. № 1102395 СССР. // Опубл. 23.03.1987. Бюл. № 11.
  11. Бударина Л.А., Шевцова С.А., Габайдуллин М.Р., Дебердеев Р.Я., Якункин М.М. Патент РФ 2066890 // Опубл. 20.09.1996.
  12. Zhong F., Kitchens J.C., Fennel L.E., Buchan N.I. Patent US 2018/0198055. Publ. Jul.12, 2018.
  13. Giacometti J.A., Oliveira O.N. // IEEE Transactions on Electrical Insulation. 1992. V. 27. № 5. P. 924. https://doi.org/10.1109/14.256470
  14. Тарасова Е.Ю., Журавлева И.И., Бакулин И.А., Кузнецов С.И., Панин А.С. // Письма в ЖТФ. 2021. Т. 47. № 23. С. 15. https://doi.org/10.21883/PJTF.2021.23.51777.18913
  15. Ибрагимова А.И., Журавлева И.И., Кузнецов С.И., Панин А.С., Тарасова Е.Ю. // Краткие сообщения по физике ФИАН. 2019. Т. 46. № 4. С. 14. https://doi.org/10.3103/S1068335619040031
  16. Zhaoliang Cui, Naser Tavajohi Hassankiadeh, Yongbing Zhuang, Enrico Drioli, Young Moo Lee // Progress in Polymer Science. 2015. V. 51. P. 94. https://doi.org/10.1016/j.progpolymsci.2015.07.007

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (349KB)
3.

Download (1MB)
4.

Download (378KB)
5.

Download (145KB)
6.

Download (157KB)

Copyright (c) 2023 И.А. Бакулин, С.И. Кузнецов, А.С. Панин, Е.Ю. Тарасова