A Low-Noise Fiber Phase-Sensitive Optical Time-Domain Reflectometer for Seismology Application

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A fiber phase-sensitive optical time-domain reflectometer (a distributed acoustic sensor) with a low-noise output signal in the frequency range of 0.01−1 Hz is proposed for seismology applications. The sensor architecture is based on an unbalanced Mach−Zehnder interferometer, which is used to form a dual-pulse probe signal with required phases of its components and to stabilize the frequency of the laser source in the feedback circuit. The low noise level of the output signal is achieved in the proposed circuit by compensating for the difference in the optical paths of the dual-pulse probe signal fields scattered by different fiber sections. The applicability of the proposed circuit has been experimentally demonstrated by detecting a remote earthquake using a fiber-optic cable located at the bottom of the Black Sea.

About the authors

A. E. Alekseev

Fryazino Branch of Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: aleksey.e.alekseev@gmail.com
141190, Fryazino, Moscow oblast, Russia

B. G. Gorshkov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: aleksey.e.alekseev@gmail.com
119991, Moscow, Russia

D. A. Il’inskii

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: aleksey.e.alekseev@gmail.com
117997, Moscow, Russia

V. T. Potapov

Fryazino Branch of Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: aleksey.e.alekseev@gmail.com
141190, Fryazino, Moscow oblast, Russia

D. E. Simikin

Fryazino Branch of Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; OOO Petrofibre

Email: aleksey.e.alekseev@gmail.com
141190, Fryazino, Moscow oblast, Russia; Moscow, Russia

M. A. Taranov

Fryazino Branch of Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; OOO Petrofibre

Author for correspondence.
Email: aleksey.e.alekseev@gmail.com
141190, Fryazino, Moscow oblast, Russia; Moscow, Russia

References

  1. Mateeva A., Lopez J., Potters H., Mestayer J., Cox B., Kiyashchenko D., Wills P., Grandi S., Hornman K., Kuvshinov B., Berlang W., Yang Zh., Detomo R. // Geophys. Prospect. 2014. V. 62. P. 679. https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.12116
  2. Williams E.F., Fernández-Ruiz M.R., Magalhaes R., Vanthillo R., Zhan Z., González-Herráez M., Martins H.F. // Nature commun. 2019. V. 10. P. 1. https://www.nature.com/articles/s41467-019-13262-7
  3. Posey R.Jr, Johnson G.A., Vohra S.T. // Electron. Lett. 2000. V. 36. P. 1688. https://digital-library.theiet.org/content/journals/10.1049/el_20001200
  4. Farhadiroushan M., Parker T.R., Shatalin S. Patent WO2010136810A2. 2010. https://patents.google.com/patent/WO2010136810A2/en
  5. Masoudi A., Belal M., Newson T.P. // Measurem. Sci. Technol. 2013. V. 24. P. 085204. https://iopscience.iop.org/article/10.1088/0957-0233/24/8/085204
  6. Dakin J.P., Lamb C. UK Patent GB2222247A. 1990. https://patents.google.com/patent/GB2222247A/en
  7. Alekseev A.E., Vdovenko V.S., Gorshkov B.G., Potapov V.T., Sergachev I.Y., Simikin D.E. // Quant. Electron. 2014. V. 44. P. 965. https://iopscience.iop.org/article/10.1070/QE2014v044n10ABEH015470
  8. Alekseev A.E., Vdovenko V.S., Gorshkov B.G., Potapov V.T., Simikin D.E. // Laser Phys. 2014. V. 24. 115106. https://iopscience.iop.org/article/10.1088/1054-660X/24/11/115106
  9. Alekseev A.E., Vdovenko V. S., Gorshkov B.G., Potapov V.T., Simikin D.E. // Laser Phys. 2015. V. 25. P. 065101. https://iopscience.iop.org/article/10.1088/1054-660X/25/6/065101
  10. Hartog, A.H. An introduction to distributed optical fibre sensors. CRC press. 2017.
  11. Alekseev A.E., Gorshkov B.G., Bashaev A.V., Potapov V.T., Taranov M.A., Simikin D.E. // Laser Phys. 2021. V. 31. P. 035101. https://iopscience.iop.org/article/10.1088/1555-6611/abd936
  12. Alekseev A.E., Tezadov Y.A., Potapov V.T. // Laser Phys. 2017. V. 27. P. 055101. https://iopscience.iop.org/article/10.1088/1555-6611/aa6378/
  13. Hartog A., Kader K. US Patent No. 9,170,149. 2015. https://patents.google.com/patent/US9170149B2/en
  14. Lu Y., Zhu T., Chen L., Bao X. // J. Lightwave Technol. 2010. V. 28. P. 3243. https://opg.optica.org/jlt/abstract.cfm?uri=jlt-28-22-3243
  15. Gorshkov B.G., Alekseev A.E., Taranov M.A., Simikin D.E., Potapov V.T., Ilinskiy D.A. // Appl. Opt. 2022. V. 61. P. 8308. https://opg.optica.org/ao/abstract.cfm?uri=ao-61-28-8308
  16. Vdovenko V.S., Gorshkov B.G., Zazirnyi D.V., Zazirnyi M.V. Patent of Russian Federation No. 2477838. 2013. https://patents.google.com/patent/RU2477838C1/ru

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (924KB)
3.

Download (390KB)
4.

Download (208KB)
5.

Download (2MB)
6.

Download (1MB)
7.

Download (234KB)

Copyright (c) 2023 А.Э. Алексеев, Б.Г. Горшков, Д.А. Ильинский, В.Т. Потапов, Д.Е. Симикин, М.А. Таранов