Refinement Method of Frequency Shift Definition of Spectrum Obtained at Low Resolution of Analyzer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper proposes a new method for the frequency shift determination of the spectrum obtained under conditions of low resolution of the analyzer, which allows, due to mathematical processing of the signal describing the spectrum, to determine its frequency shift with a resolution two orders of magnitude greater than the instrumental one. The method is based on representing a signal describing a frequency-shifted spectrum as a continuous function differentiable everywhere, expanding it into a Taylor series, approximating its derivatives by finite differences of a given order, and determining the frequency shift by the least squares method. The mathematical substantiation of the method as well as the results of numerical experiments are given. The prospects for the application of the proposed method are discussed.

About the authors

B. I. Valeev

Kazan National Research Technical University Named after A.N. Tupolev-KAI Department of Radiophotonics and Microwave Technologies

Email: kje.student@mail.ru
K. Marx Str., 10, 420111, Kazan, Russia

T. A. Agliullin

Kazan National Research Technical University Named after A.N. Tupolev-KAI Department of Radiophotonics and Microwave Technologies

Email: kje.student@mail.ru
K. Marx Str., 10, 420111, Kazan, Russia

A. Zh. Sakhabutdinov

Казанский национальный исследовательский технический университет имени А.Н. Туполева–КАИ
Кафедра радиофотоники и микроволновых технологий

Author for correspondence.
Email: kje.student@mail.ru
K. Marx Str., 10, 420111, Kazan, Russia

References

  1. Capmany J., Novak D. // Nature Photon. 2007. V. 1. P. 319. https://doi.org/10.1038/nphoton.2007.89
  2. Jin Y., Dong X., Gong H., Shen C. // Microwave Opt. Technol. Lett. 2010. V. 52. P. 1375. https://doi.org/10.1002/mop.25178
  3. Morozov O.G., Sakhabutdinov A.J. // Computer Opt. 2019. V. 43. P. 535. https://doi.org/10.18287/2412-6179-2019-43-4-535-543
  4. Agliullin T.A., Anfinogentov V.I., Misbakhov R.Sh., Morozov O.G., Sakhabutdinov A.Zh. // Proceed. Telecomm. Univers. 2020. V. 6. P. 6. https://doi.org/10.31854/1813-324X-2020-6-1-6-13
  5. Morozov O., Sakhabutdinov A., Anfinogentov V., Misbakhov R., Kuznetsov A., Agliullin T. // Sensors 2020. V. 20. P. 2693. https://doi.org/10.3390/s20092693
  6. Сахабутдинов А.Ж., Нуреев И.И., Морозов О.Г. // Физика волновых процессов и радиотехнические системы. 2015. Т. 18. № 3–2. С. 98.
  7. Anfinogentov V., Karimov K., Kuznetsov A., Morozov O.G., Nureev I., Sakhabutdinov A., Lipatnikov K, Hussein S.M.R.H., Ali M.H. // Sensors 2021. V. 21. P. 2817. https://doi.org/10.3390/s21082817

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (228KB)
3.

Download (166KB)
4.

Download (125KB)

Copyright (c) 2023 Б.И. Валеев, Т.А. Аглиуллин, А.Ж. Сахабутдинов