A Method of Operative Control of Instrumental Errors in Recording of the Reflectance Magnetic Circular Dichroism Spectra

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We describe a technique for online control of the reliability of the data of magnetic circular dichroism spectroscopy in reflected light, which is based on measuring the polar magneto-optical Kerr effect under normal incidence of light on a sample with a method of phase modulation of a light wave using a photoelastic modulator. The presented technique involves measuring the amplitudes of signals at the “zero” (V=) and doubled (V2f) frequency f of the retardation modulation in crossed polarizers in the process of scanning over a spectrum. In these measurements, the constancy of the V2f/V= ratio over the entire spectral range confirms the reliability of the spectroscopy data. The possible instrumental errors that lead to a distortion of the recorded spectrum shape were analyzed. The operability and efficiency of the technique is illustrated by an example of measuring the magnetic circular dichroism spectrum of a MnAs film.

About the authors

Yu. V. Markin

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Fryazino Branch)

Email: markin@fireras.su
141190, Fryazino, Moscow oblast, Russia

Z. E. Kun’kova

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Fryazino Branch)

Author for correspondence.
Email: markin@fireras.su
141190, Fryazino, Moscow oblast, Russia

References

  1. Sato K. // Jpn. J. Appl. Phys. 1981. V. 20. № 12. P. 2403.
  2. Martens J.W.D., Peeters W.L., Nederpel P.Q.J., Erman M. // J. Appl. Phys. 1984. V. 55. № 4. P. 1100.
  3. Sun C., Kono J., Cho Y.-H., Wójcik A.K., Belyanin A., Munekata H. // Phys. Rev. 2011. V. B83. № 12. P. 125206. https://doi.org/10.1103/PhysRevB.83.125206
  4. Arora A., Ghosh S., Sugunakar V. // Rev. Sci. Instrum. 2011. V. 82. № 12. P. 123903. https://doi.org/10.1063/1.3669782
  5. Sato K., Hongu H., Ikekame H., Tosaka Y., Watanabe M., Takanashi K., Fujimori H. // Jpn. J. Appl. Phys. 1993. V. 32. Pt. 1. № 2. P. 989. https://doi.org/10.1143/JJAP.32.989
  6. Jasperson S.N., Schnatterly S.E. // Rev. Sci. Instrum. 1969. V. 40. № 6. P. 761.
  7. Соколов А.В. Оптические свойства металлов. М.: Гос. изд-во физ.-мат. лит-ры, 1961.
  8. Mansuripur M., Zhou F., Erwin J.K. // Appl. Opt. 1990. V. 29. № 9. P. 1308.
  9. Hipps K.W., Crosby G.A. // J. Phys. Chem. 1979. V. 83. № 5. P. 555.
  10. Drake A.F. // J. Phys. E: Sci. Instrum. 1986. V. 19. № 3. P. 170.
  11. Oakberg T.C., Bryan A.J. // Proc. SPIE. 2002. V. 4819. P. 98. https://doi.org/10.1117/12.450859
  12. Photomultiplier Tubes. Basics and Applications. Third Edition. Hamamatsu Photonics K.K., Electron Tube Division, 2006.
  13. PEM-100 Photoelastic Modulator User Manual. Hinds Instruments, Inc. http://www.hindsinstruments.com
  14. Van Drent W.P., Suzuki T. // J. Magn. Magn. Mater. 1997. V. 175. № 1–2. P. 53. https://doi.org/10.1016/S0304-8853(97)00227-8
  15. Van Drent W.P., Suzuki T. // IEEE Trans. Magn. 1997. V. 33. № 5. P. 3223. https://doi.org/10.1109/20.617898
  16. Postava K., Maziewski A., Yamaguchi T., Ossikovski R., Višňovskí Š., Pištora J. // Opt. Express. 2004. V. 12. № 24. P. 6040. https://doi.org/10.1364/OPEX.12.006040
  17. Ищенко Е.Ф., Соколов А.Л. Поляризационная оптика. М.: Физматлит, 2019.
  18. Шлее М. Qt 5.3. Профессиональное программирование на C++. СПб.: БХВ-Петербург, 2015.
  19. Топорец А.С. Монохроматоры. М.: Гос. изд-во технико-теоретич. лит-ры, 1955.
  20. Nazmul A.M., Shimizu H. // J. Appl. Phys. 2000. V. 87. № 9. P. 6791. https://doi.org/10.1063/1.372843
  21. Sato K., Teranishi T. // J. Magn. Magn. Mater. 1983. V. 31–34. Pt. 1. P. 333.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (249KB)
3.

Download (140KB)
4.

Download (193KB)
5.

Download (145KB)
6.

Download (243KB)
7.

Download (103KB)

Copyright (c) 2023 Ю.В. Маркин, З.Э. Кунькова