Обилие и разнообразие микроорганизмов в почвах и сопряженных субстратах (опаде и “подвешенной почве”) некоторых заповедников Вьетнама
- Авторы: Князева А.В.1,2, Лысак Л.В.1, Лапыгина Е.В.1, Александрова А.В.1
-
Учреждения:
- МГУ им. М.В. Ломоносова
- Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН
- Выпуск: № 6 (2023)
- Страницы: 730-744
- Раздел: БИОЛОГИЯ ПОЧВ
- URL: https://rjsvd.com/0032-180X/article/view/665852
- DOI: https://doi.org/10.31857/S0032180X22601323
- EDN: https://elibrary.ru/FPMROX
- ID: 665852
Цитировать
Аннотация
Проведено комплексное исследование почвенного прокариотного сообщества зональных ферралитных и интразональных аллювиальных почв Вьетнама, а также сопряженных с ними растительного опада и “подвешенной почвы” из корзинок эпифитных папоротников. Наибольшая численность бактерий, определенная прямым люминесцентным методом, отмечена в образцах ферралитных почв (5.59 млрд кл./г), тогда как длина грибного (2038 м/г) и актиномицетного мицелия (1086 м/г) была наибольшей в аллювиальных почвах. В среднем, наибольшие показатели общей численности и длины актиномицетного и грибного мицелия зарегистрированы в горных ферралитных почвах. Актинобактерии, в частности бактерии рода Streptomyces, вносят значительный вклад в деструкцию растительного материала. В прокариотном сообществе зональной красно-желтой гумусно-ферралитной почвы преобладали бактерии филумов Firmicutes (80%) и Proteobacteria (15%), в образце “подвешенной почвы” – филумы Proteobacteria (51%), Actinobacteria (38%). Значительно меньше представлены филумы Chloroflexi, Acidobacteria, Bacteroidetes и Cyanobacteria. При значительных различиях на уровне родов в исследованных субстратах выделены следующие функциональные группировки микроорганизмов: деструкторы ксенобиотиков, бактерии цикла азота, экстремофилы, а также бактерии-ингибиторы роста микромицетов. Метаболически активная часть прокариотного сообщества, представленная филумами Proteobacteria, Actinobacteria и Acidobacteria, была наибольшей в “подвешенной почве”, меньшей – в опаде и горизонте А красно-желтой гумусно-ферралитной почвы, что соотносилось с высокой численностью этих филумов и значительным таксономическим разнообразием бактерий в этом локусе. Функциональные гены: nifH – ген, кодирующий субъединицу нитрогеназы, и alkB, кодирующий алкан гидроксилазу – детектированы во всех исследованных субстратах. Численность копий функциональных генов была наибольшей в образце “подвешенной почвы”, что делает этот локус перспективным для выделения штаммов с высоким биотехнологическим потенциалом.
Ключевые слова
Об авторах
А. В. Князева
МГУ им. М.В. Ломоносова; Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН
Автор, ответственный за переписку.
Email: aknyazeva1999@gmail.com
Россия, 119991, Москва, Ленинские горы, 1; Россия, 142290, Пущино, пр-т Науки, 5,
Л. В. Лысак
МГУ им. М.В. Ломоносова
Автор, ответственный за переписку.
Email: lvlysak@mail.ru
Россия, 119991, Москва, Ленинские горы, 1
Е. В. Лапыгина
МГУ им. М.В. Ломоносова
Email: lvlysak@mail.ru
Россия, 119991, Москва, Ленинские горы, 1
А. В. Александрова
МГУ им. М.В. Ломоносова
Email: lvlysak@mail.ru
Россия, 119991, Москва, Ленинские горы, 1
Список литературы
- Дорченкова Ю.А., Грачева Т.А., Лысак Л.В. Характеристика актиномицетных комплексов заповедника Пу Хоат // Почвоведение. 2022. № 4. С. 482–487.
- Егоров В.В., Иванова Е.Н., Фридланд В.М., Розов Н.И. Классификация и диагностика почв СССР. М.: Колос, 1977. 30 с.
- Еськов А.К. Экофизиологическая классификация сосудистых эпифитов как теоретическая предпосылка формирования коллекций и сообществ эпифитных растений в условиях оранжерейной культуры // Естественные и техн. науки. 2012. № 4. С. 93–98.
- Еськов А.К., Абакумов Е.В., Тиунов А.В., Кузнецова О.А., Дубовиков Д.А., Прилепский Н.Г., Антипина В.А., Кузнецов А.Н. Агеотропные воздушные корни-улавливатели гнездовых эпифитов и их роль в формировании подвешенных почв // Журн. общ. биол. 2017. Т. 78. № 3. С. 54–68.
- Еськов А.К., Прилепский Н.Г., Антипина В.А., Абакумов Е.В., Ван Тхинь Н. Формирование эпифитных сообществ в искусственных лесных посадках Южного Вьетнама // Экология. 2020. № 3. С. 171–180. https://doi.org/10.31857/S0367059720030075
- Калашникова К.А., Коновалова О.П., Александрова А.В. Почвообитающие микроскопические грибы муссонного диптерокарпового леса (заповедник Донг Най, Южный Вьетнам) // Микология и фитопатология. 2016. Т. 50. № 2. С. 97–107.
- Князева А.В., Лысак Л.В., Манучарова Н.А., Лапыгина Е.В., Александрова А.В. Численность и таксономическое разнообразие прокариот аллювиальной бурой почвы и сопряженных субстратов (Вьетнам, заповедник Пу Хоат) // Почвоведение. 2022. № 10. С. 1290–1300.
- Ковязин В.Ф., Данг Т.Л., Данг В.Х. Прогноз состояния растительного покрова лесных угодий заповедника Донг Най Вьетнама // Вестник СГУГиТ. 2020. Т. 25. № 3. С. 214–228.
- Кузнецов А.Н., Кузнецова С.П. Структура и функции почвенного населения муссонного тропического леса национального парка Кат Тьен, Южный Вьетнам. М.: Лесная растительность, 2011. С. 16–43.
- Лапыгина Е.В., Лысак Л.В., Грачева Т.А., Кудинова А.Г. Структура микробных сообществ красных ферралитных почв национального парка Варадеро (провинция Матансас, остров Куба) // Изв. РАН. Сер. биол. 2015. С. 244–249.
- Лысак Л.В., Лапыгина Е.В., Конова И.А., Звягинцев Д.Г. Численность и таксономический состав наноформ бактерий в некоторых почвах России // Почвоведение. 2010. № 7. С. 819–824.
- Лысак Л.В., Добровольская Т.Г., Скворцова И.Н. Методы оценки бактериального разнообразия почв и идентификации почвенных бактерий. М.: МАКС Пресс, 2003. 120 с.
- Манучарова Н.А., Ксенофонтова Н.А., Белов А.А., Каменский Н.Н., Арзамазова А.В., Зенова Г.М., Кинжаев Р.Р., Трофимов С.Я., Степанов А.Л. Прокариотный компонент нефтезагрязненной торфяной олиготрофной почвы при разном уровне минерального питания // Почвоведение. 2021. № 1. С. 80–89. https://doi.org/10.31857/S0032180X2101010X
- Манучарова Н.А., Ксенофонтова Н.А., Каримов Т.Д., Власова А.П., Зенова Г.М., Степанов А.Л. Изменение филогенетической структуры метаболически активного прокариотного комплекса почв под влиянием нефтяного загрязнения // Микробиология. 2020. Т. 89. № 2. С. 222–234. https://doi.org/10.31857/S0026365620020093
- Наумов В.Д. Почвы тропиков и субтропиков и их сельскохозяйственное использование. М.: Колос, 2010. 361 с.
- Нгуен Ты Сием, Фридланд В.М., Орлов Д.С. Состав и свойства гумусовых веществ главнейших почв Северного Вьетнама // Почвоведение. 1977. № 8. С. 39–54.
- Околелова А.А., Тхинь Нгуен Ван, Авилов В.К. Свойства основных типов почв Биосферного Заповедника Донг Най (Южный Вьетнам) // Региональные геосистемы. 2014. № 10(181).
- Першина Е.В., Чернов Т.И. Генетическая информация в почве // Основные достижения и перспективы почвенной метагеномики. СПб.: Информ-Навигатор, 2017. С. 9–18.
- Полянская Л.М., Гейдебрехт В.В., Степанов А.Л., Звягинцев Д.Г. Распределение численности и биомассы микроорганизмов по профилю зональных типов почв // Почвоведение. 1995. № 5. С. 566–572.
- Почвоведение / Под ред. Ковды В.А., Розанова Б.Г. М.: Высш. шк., 1988. 400 с.
- Почвообразовательные процессы / Под ред. Симаковой М.С., Топконогова В.Д. М.: Почв. ин-т им. В.В Докучаева, 2006. 510 с.
- Феоктистова Н.В., Марданова А.М., Хадиева Г.Ф., Шарипова М.Р. Ризосферные бактерии // Ученые записки Казанского ун-та. Сер. Естественные науки. 2016. № 2. С. 207–224.
- Чернов Т.И., Железова А.Д., Тхакахова А.К., Бгажба Н.А., Зверев А.О. Микробиомы целинных почв тропических лесов южного Вьетнама // Микробиология. 2019. Т. 88. № 4. С. 479–489.
- Abakumov E.V., Rodina O.A., Eskov A.K. Humification and humic acid composition of suspended soil in oligotrophous environments in South Vietnam // Appl. Environ. Soil Sci. 2018. V. 1. P. 1–8. https://doi.org/10.1155/2018/1026237
- Avguštin J.A., Bertok D.Ž., Avguštin G. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. // Antonie Van Leeuwenhoek. 2013. V. 103. P. 763–769. https://doi.org/10.1007/s10482-012-9858-0
- Baig Z.T., Abbasi S.A., Memon A.G., Naz A., Soomro A.F. Assessment of degradation potential of Pseudomonas species in bioremediating soils contaminated with petroleum hydrocarbons // J. Chem. Technol. Biotechnol. 2022. V. 97. P. 455–465. https://doi.org/10.1002/jctb.6820
- Benzing D.H. Vascular Epiphytes: General Biology and Related Biota. Cambridge: Cambridge University Press, 1990.
- Blecher H., Blecher R., Wegst W., Eberspaecher J., Lingens F. Bacterial degradation of aminopyrine // Xenobiotica. 1981. V. 11. P. 749–754. https://doi.org/10.3109/00498258109045878
- Bohlman S.A., Matelson T.J., Nadkarni N.M. Moisture and temperature patterns of canopy humus and forest floor soil of a mountain cloud forest, Costa Rica // Biotropica. 1995. V. 27. P. 13–19.
- Caporaso J., Kuczynski J., Stombaugh J. et al. QIIME allows analysis of high-throughput community sequencing data // Nat Methods. 2010. V. 7. P. 335–336. https://doi.org/10.1038/nmeth.f.303
- Coss-Navarrete E.L., Díaz-Valle A., Alvarez-Venegas R. Induction of plant resistance to biotic stress by priming with β-aminobutyric acid (BABA) and its effect on nitrogen-fixing nodule development // Academic Press. 2020. P. 101–114. https://doi.org/10.1016/B978-0-12-817892-8.00006-4
- Donald J., Maxfield P., Leroy C., Ellwood M.D. Epiphytic suspended soils from Borneo and Amazonia differ in their microbial community composition // Acta Oecologica. 2020. V. 1. P. 106. https://doi.org/10.1016/j.actao.2020.103586
- Eskov A.K., Zverev A.O., Abakumov E.V. Microbiomes in Suspended Soils of Vascular Epiphytes Differ from Terrestrial Soil Microbiomes and from Each Other // Microorganisms. 2021. V. 9. P. 1033. https://doi.org/10.3390/microorganisms9051033
- Fierer N., Jackson J.A., Vilgalys R., Jackson R.B. Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays // App-l. Environ. Microbiol. 2005. V. 7. P. 4117–4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005
- Gargallo-Garriga A., Sardans J., Alrefaei A.F., Klem K., Fuchslueger L., Ramírez-Rojas I., Donald J., Leroy C. et al. Tree Species and Epiphyte Taxa Determine the “Metabolomic niche” of Canopy Suspended Soils in a Species-Rich Lowland Tropical Rainforest // Metabolites. 2021. V. 11. P. 718.
- Huo Y., Kang J.P., Ahn J.C., Yang D.U., Yang D.C. Ornithinimicrobium panacihumi sp. nov., Antagonistic Bacteria Against Root Rot Fungal Pathogens, Isolated from Cultivated Ginseng Soil // Current Microbiol. 2019. V. 76. P. 22–28. https://doi.org/10.1007/s00284-018-1579-9
- Leys N.M., Ryngaert A., Bastiaens L., Verstraete W., Top E.M., Springael D. Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons // Appl. Environ. Microbiol. 2004. V. 70. P. 1944–1955. https://doi.org/10.1128/AEM.70.4.1944-1955.2004
- Lincoln S.P., Fermor T.R., Tindall B.J. Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus // Int. J. Syst. Evol. Microbiol. 1999. V. 49. P. 1577–1589. https://doi.org/10.1099/00207713-49-4-1577
- Mohagheghi A., Grohmann K., Himmel M., Leighton L., Updegraff D.M. Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria // Int. J. Syst. Bacteriol. 1986. V. 36. P. 435–443. https://doi.org/10.1099/00207713-36-3-435
- Prashar P., Kapoor N., Sachdeva S. Rhizosphere: Its structure, bacterial diversity and significance // Rev. Environ. Sci. BioTechnol. 2013. V. 13. P. 63–77. https://doi.org/10.1007/s11157-013-9317-z
- Pruesse E., Quast C., Knittel K. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB// Nucleic Acids Res. 2007. V. 35. P. 7188–7196. https://doi.org/10.1093/nar/gkm864
- Rob J.M. van Spanning, David J. Richardson, Stuart J. Ferguson. Introduction to the Biochemistry and Molecular Biology of Denitrification / Biology of the Nitrogen Cycle. Elsevier, 2007. P. 3–20. https://doi.org/10.1016/B978-044452857-5.50002-3
- Rogel M.A., Hernández–Lucas I., Kuykendall L.D., Balkwill D.L., Martinez–Romero E. Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids // Appl. Environ. Microbiol. 2001. V. 67. P. 3264–3268. https://doi.org/10.1128/AEM.67.7.3264-3268.2001
- Setiawan A., Setiawan F., Juliasih N., Widyastuti W., Laila A., Setiawan W.A., Djailani F.M. et al. Fungicide Activity of Culture Extract from Kocuria palustris 19C38A1 against Fusarium oxysporum // J. Fungi. (Basel). 2022. V. 8. P. 280. https://doi.org/10.3390/jof8030280
- Walsh C.M., Gebert M.J., Delgado–Baquerizo M., Maestre F.T., Fierer N. A Global Survey of Mycobacterial Diversity in Soil // Appl. Environ. Microbiol. 2019. V. 85. P. 180. https://doi.org/10.1128/AEM.01180-19
- Wang J., Zhang J., Ding K., Xin Y., Pang H. Brevundimonas viscosa sp. nov., isolated from saline soil // Int. J. Systematic Evolutionary Microbiol. 2012. V. 62. P. 2475–2479. https://doi.org/10.1099/ijs.0.035352-0
- World Reference Base for Soil Resources 2014, Update 2015. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO, 2015.
Дополнительные файлы
