Drivers of Soil Organic Carbon Spatial Distribution in the Southern Ural Mountains: a Machine Learning Approach
- Authors: Suleymanov A.R.1,2, Suleymanov R.R.1,2,3, Belan L.N.1, Asylbaev I.G.1,4, Tuktarova I.O.1, Shagaliev R.D.1, Bogdan Е.А.1, Fairuzov I.I.3, Mirsayapov R.R.3, Davydychev A.N.2
-
Affiliations:
- Ufa State Petroleum Technological University
- Ufa Institute of Biology of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Ufa University of Science and Technology
- Bashkir State Agrarian University
- Issue: No 11 (2024)
- Pages: 1630-1638
- Section: APPLICATION OF MODELING TO ASSESS AND FORECAST CHANGES IN SOIL CARBON STOCKS
- URL: https://rjsvd.com/0032-180X/article/view/677890
- DOI: https://doi.org/10.31857/S0032180X24110142
- EDN: https://elibrary.ru/JNOHJT
- ID: 677890
Cite item
Abstract
This study aims to assess the relationships between SOC content and main soil-forming factors and identify key factors explaining the spatial distribution of SOC. The research was conducted in the Southern Ural Mountains throughout 420 km from north to south in the Republic of Bashkortostan. The predominant soil types are mountainous gray forest (Eutric Retisols (Loamic, Cutanic, Humic)), dark gray forest (Luvic Retic Greyzemic Someric Phaeozems (Loamic)) soils, and gray-humus lithozems (Eutric Leptosols (Loamic, Humic)). Forest stands are mainly composed of birch (Betula pendula), pine (Pinus sylvestris), spruce (Picea obovata Ledeb.), and fir (Abies sibirica Ledeb.). A data set of 306 soil samples taken from the top layer (0–20 cm) was studied using the “random forest” machine learning method. Ninety-four spatial environmental covariates were used as explanatory variables, including remote sensing data, climate (temperature, precipitation, cloudiness, etc.), digital elevation model and its derivatives, land uses, bioclimatic zones, etc. The results showed that the SOC content varied widely from 0.8 to 32%. The random forest predictive model explained 55% of SOC variation (R2) with a root mean squared error (RMSE) of 1.35%. Key variables included surface temperature, absolute elevation, precipitation, and cloudiness, which together reflect the Dokuchaev vertical and horizontal zonality laws. The findings emphasize the importance of considering multiple environmental factors in subsequent research focused on assessing the spatial distribution of SOC.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
A. R. Suleymanov
Ufa State Petroleum Technological University; Ufa Institute of Biology of the Ufa Federal Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: filpip@yandex.ru
ORCID iD: 0000-0001-7974-4931
Russian Federation, Ufa, 450064; Ufa, 450054
R. R. Suleymanov
Ufa State Petroleum Technological University; Ufa Institute of Biology of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology
Email: filpip@yandex.ru
Russian Federation, Ufa, 450064; Ufa, 450054; Ufa, 450076
L. N. Belan
Ufa State Petroleum Technological University
Email: filpip@yandex.ru
Russian Federation, Ufa, 450064
I. G. Asylbaev
Ufa State Petroleum Technological University; Bashkir State Agrarian University
Email: filpip@yandex.ru
Russian Federation, Ufa, 450064; Ufa, 450001
I. O. Tuktarova
Ufa State Petroleum Technological University
Email: filpip@yandex.ru
Russian Federation, Ufa, 450064
R. D. Shagaliev
Ufa State Petroleum Technological University
Email: filpip@yandex.ru
Russian Federation, Ufa, 450064
Е. А. Bogdan
Ufa State Petroleum Technological University
Email: filpip@yandex.ru
Russian Federation, Ufa, 450064
I. I. Fairuzov
Ufa University of Science and Technology
Email: filpip@yandex.ru
Russian Federation, Ufa, 450076
R. R. Mirsayapov
Ufa University of Science and Technology
Email: filpip@yandex.ru
Russian Federation, Ufa, 450076
A. N. Davydychev
Ufa Institute of Biology of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: filpip@yandex.ru
Russian Federation, Ufa, 450054
References
- Агрохимические методы исследования почв. М.: Наука, 1976. 656 с.
- Бурангулова М.Н., Мукатанов А.Х., Курчеев П.А. Горные почвы Башкирии // Почвы Башкирии. Уфа, 1973. Т. 1. С. 405–437.
- Габбасова И.М., Гарипов Т.Т., Сулейманов Р.Р., Комиссаров М.А., Хабиров И.К., Сидорова Л.В., Назырова Ф.И., Простякова З.Г., Котлугалямова Э.Ю. Влияние низовых пожаров на свойства и эрозию лесных почв Южного Урала (Башкирский государственный природный заповедник) // Почвоведение. 2019. № 4. С. 412–421.
- Дымов А.А., Жангуров Е.В. Морфолого-генетические особенности почв кряжа Енганэпэ (Полярный Урал) // Почвоведение. 2011. № 5. С. 515–524.
- Жангуров Е.В., Королёв М.А., Дубровский Ю.А., Шамрикова Е.В. Почвы горного хребта Рай-Из (Полярный Урал) // Почвоведение. 2023. № 4. С. 417–432.
- Жангуров Е.В., Старцев В.В., Дубровский Ю.А., Дегтева С.В., Дымов А.А. Морфолого-генетические особенности почв горных лиственничных лесов и редколесий Приполярного Урала // Почвоведение. 2019. № 12. С. 1415–1429.
- Лукина Н.В., Кузнецова А.И., Гераськина А.П., Смирнов В.Э., Иванова В.Н., Тебенькова Д.Н., Горнов А.В., Шевченко Н.Е., Тихонова Е.В. Неучтенные факторы, определяющие запасы углерода в лесных почвах // Метеорология и гидрология. 2022. № 10. С. 92–110.
- Самофалова И.А., Лузянина О.А. Горные почвы Среднего Урала (на примере ГПЗ “Басеги”). Пермь: Прокростъ, 2014. 154 с.
- Сморкалов И.А. Изменчивость дыхания почвы: оценка вклада пространства и времени с помощью алгоритма Random Forest // Экология. 2022. № 4. С. 299–311.
- Старцев В.В., Мазур А.С., Дымов А.А. Содержание исостав органического вещества почв Приполярного Урала // Почвоведение. 2020. № 12. С. 1478–1488.
- Хазиев Ф.Х., Мукатанов А.Х., Хабиров И.К., Кольцова Г.А., Габбасова И.М., Рамазанов Р.Я. Почвы Башкортостана. Эколого-генетическая и агропроизводственная характеристика. Уфа: Гилем, 1995. Т. 1. 384 с.
- Халитов Р.М., Абакумов Е.В., Сулейманов Р.Р., Котлугалямова Э.Ю. Горные почвы Южного Урала (на примере Национального парка “Башкирия”) // Известия Самарского НЦ РАН. 2011. Т. 13. № 5-2. С. 128–130.
- Халитов Р.М. Перова Е.Н., Абакумов Е.В., Сулейманов Р.Р. Минералогический состав коренной горной породы торфянисто-подзолистой почвы горного массива Иремель, Южный Урал // Почвоведение. 2017. № 8. С. 992–1001.
- Чибилев А.А. Природа Оренбургской области. Ч. 1. Физико-географический и историко-географический очерк. Оренбург, 1995. 128 с.
- Шамрикова Е.В., Жангуров Е.В., Кулюгина Е.Е., Королев М.А., Кубик О.С., Туманова Е.А. Почвы и почвенный покров горно-тундровых ландшафтов Полярного Урала на карбонатных породах: разнообразие, классификация, распределение углерода и азота // Почвоведение. 2020. № 9. С. 1053–1070.
- Adhikari K., Hartemink A.E., Minasny B., Bou Kheir R.M., Greve B., Greve M.H. Digital mapping of soil organic carbon contents and stocks in Denmark // PloS One. 2014. V. 9(8). P. e105519. https://doi.org/10.1371/journal.pone.0105519
- Batjes N.H. Total carbon and nitrogen in the soils of the world // Eur. J. Soil Sci. 1996. V. 47(2). P. 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
- Belan L., Suleymanov A., Bogdan E., Volkov A., Gaysin I., Tuktarova I., Shagaliev R. Assessing and Mapping Changes in Forest Growing Stock Volume over Time in Bashkiriya Nature Reserve, Russia // Forests. 2023. V. 13(11). P. 2251. https://doi.org/10.3390/f14112251
- Biau G., Scornet E. A random forest guided tour // TEST. 2016. V. 25(2). P. 197–227. https://doi.org/10.1007/s11749-016-0481-7
- Breiman L. Random Forests // Machine Learning. 2001. V. 45(1). P. 5–32.
- Chen S., Arrouays D., Leatitia Mulder V., Poggio L., Minasny B., Roudier P., Libohova Z., Lagacherie P., Shi Z., Hannam J., Meersmans J., Richer-de-Forges A.C., Walter C. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review // Geoderma. 2022. V. 409. P. 115567. https://doi.org/10.1016/j.geoderma.2021.115567
- Chinilin A., Savin I.Yu. Combining machine learning and environmental covariates for mapping of organic carbon in soils of Russia // The Egypt. J. Remote Sensing Space Sci. 2023. V. 26(3). P. 666–675. https://doi.org/10.1016/j.ejrs.2023.07.007
- Dymov A.A., Startsev V.V., Milanovsky E.Y., Valdes-Korovkin I.A., Farkhodov Y.R., Yudina A.V., Donnerhack O., Guggenberger G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia) // Geoderma. 2021. V. 404. P. 115278. https://doi.org/10.1016/j.geoderma.2021.115278
- Guyon I., Weston J., Barnhill S., Vapnik V. Gene Selection for Cancer Classification using Support Vector Machines // Machine Learning. 2022. V. 46(1). P. 389–422. https://doi.org/10.1023/A:1012487302797
- Johnson D.W., Curtis P.S. Effects of forest management on soil C and N storage: meta analysis // Forest Ecology and Management. 2001. V. 140(2-3). P. 227–238.
- Kuhn M., Johnson K. Applied Predictive Modeling. N.Y.: Springer, 2013.
- Kuznetsova A.I., Geraskina A.P., Lukina N.V., Smirnov V.E., Tikhonova E.V., Shevchenko N.E., Gornov A.V., Ruchinskaya E.V., Tebenkova D.N. Linking Vegetation, Soil Carbon Stocks, and Earthworms in Upland Coniferous–Broadleaf Forests // Forests. 2021. V. 12(9). P. 1179. https://doi.org/10.3390/f12091179
- McBratney A.B., Mendonça Santos M.L., Minasny B. On digital soil mapping // Geoderma. 2003. V. 117(1–2). P. 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4
- Poggio L., de Sousa L.M., Batjes N.H., Heuvelink G.B.M., Kempen B., Ribeiro E., Rossiter D. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty // Soil. 2021. V. 7(1). P. 217–240. https://doi.org/10.5194/soil-7-217-2021
- Rodriguez-Galiano V.F., Ghimire B., Rogan J., Chica-Olmo M., Rigol-Sanchez J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification // ISPRS J. Photogrammetry Remote Sensing. 2012. V. 67. P. 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002
- Suleymanov A., Abakumov E., Alekseev I., Nizamutdinov T. Digital mapping of soil properties in the high latitudes of Russia using sparse data // Geoderma Regional. 2024. V. 36. P. e00776. https://doi.org/10.1016/j.geodrs.2024.e00776
- Suleymanov A., Gabbasova I., Suleymanov R., Abakumov E., Polyakov V., Liebelt P. Mapping soil organic carbon under erosion processes using remote sensing // Hungarian Geographical Bulletin. 2021. V. 70(1). P. 49–64. https://doi.org/10.15201/hungeobull.70.1.4
- Suleymanov A., Tuktarova I., Belan L., Suleymanov R., Gabbasova I., Araslanova L. Spatial prediction of soil properties using random forest, k-nearest neighbors and cubist approaches in the foothills of the Ural Mountains, Russia // Modeling Earth Systems and Environment. 2023. V. 9(3). P. 3461–3471. https://doi.org/10.1007/s40808-023-01723-4
- Wadoux A.M.J.-C., Minasny B., McBratney A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions // Earth-Sci. Rev. 2020. V. 210. P. 103359. https://doi.org/10.1016/j.earscirev.2020.103359
- Wadoux A.M.J.-C., Saby N.P.A., Martin M.P. Shapley values reveal the drivers of soil organic carbon stock prediction // Soil. 2023. V. 9. P. 21–38. https://doi.org/10.5194/soil-9-21-2023
- Wang Q., Zhao X., Chen L., Yang Q., Chen S., Zhang W. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms // Functional Ecology. 2019. V. 33. P. 514–523. https://doi.org/10.1111/1365- 2435.13256
- WMO, World Meteorological Organization (WMO). State of the Global Climate 2022 (WMO-No. 1316). 2023. WMO, Geneva.
- Zhou T., Geng Y., Chen J., Pan J., Haase D., Lausch A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms // Sci. Total Environ. 2020. V. 729. P. 138244. https://doi.org/10.1016/j.scitotenv.2020.138244
Supplementary files
