Soil Organic Carbon Sequestration Potential Maps in the Russian Cropland
- Authors: Romanenkov V.A.1,2, Meshalkina J.L.1, Gorbacheva A.Y.1, Krenke A.N.3, Petrov I.K.4, Golozubov O.M.1, Rukhovich D.I.5
-
Affiliations:
- Lomonosov Moscow State University
- Pryanishnikov Research Institute of Agrochemistry
- Institute of Geography, Russian Academy of Sciences
- Analytical Forestry and Agriculture Center
- Dokuchaev Soil Science Institute
- Issue: No 5 (2024)
- Pages: 677-692
- Section: GENESIS AND GEOGRAPHY OF SOILS
- URL: https://rjsvd.com/0032-180X/article/view/666636
- DOI: https://doi.org/10.31857/S0032180X24050037
- EDN: https://elibrary.ru/YLUZDQ
- ID: 666636
Cite item
Abstract
Adaptation of the farming systems that aim to store carbon in agricultural soils may be one of the ways to address global climate change. Current study aims were at estimating organic carbon sequestration in the Russian cropland at a soil depth of 0-30 cm by creating a series of maps. Data from global and national databases were used as the input data. Maps were generated in the framework of the FAO Global Soil Carbon Sequestration Map (GSOCseq) project according to the unified methodology using the RothC model to predict the rate of carbon sequestration in the period 2020–2040 under the business-as-usual scenario, as well as under sustainable soil management scenarios with a different increase in organic matter intake (+5, +10 and +20%) due to the use of carbon-saving practices. The total potential rate of sequestration by cropland of the Russian Federation in a layer of 0–30 cm under business-as-usual scenario can be estimated as 8.5 Mt/year, the estimate under sustainable soil management scenarios can reach up to 25.5 Mt/year. It is shown that the carbon sequestration by cropland of each zone of soil-ecological zoning (except for the light chestnut and brown semi-desert soils, where it around zero) and on a national scale are positive. The following regions have the greatest potential for sequestration: Altai Krai, Omsk Oblast, Novosibirsk Oblast, Krasnoyarsk Krai. In a number of subjects of the Russian Federation: the Krasnodar Territory, the Republic of Crimea, the Rostov Region, the Primorsky Territory, the Republic of Adygea and the Kaliningrad Region, measures should be taken to introduce the practice of sustainable management of soil resources.
Full Text
##article.viewOnOriginalSite##About the authors
V. A. Romanenkov
Lomonosov Moscow State University; Pryanishnikov Research Institute of Agrochemistry
Email: jlmesh@list.ru
Russian Federation, Moscow, 119991; Moscow, 127434
J. L. Meshalkina
Lomonosov Moscow State University
Author for correspondence.
Email: jlmesh@list.ru
Russian Federation, Moscow, 119991
A. Y. Gorbacheva
Lomonosov Moscow State University
Email: jlmesh@list.ru
Russian Federation, Moscow, 119991
A. N. Krenke
Institute of Geography, Russian Academy of Sciences
Email: jlmesh@list.ru
Russian Federation, Moscow, 119017
I. K. Petrov
Analytical Forestry and Agriculture Center
Email: jlmesh@list.ru
Russian Federation, Moscow, 115191
O. M. Golozubov
Lomonosov Moscow State University
Email: jlmesh@list.ru
Russian Federation, Moscow, 119991
D. I. Rukhovich
Dokuchaev Soil Science Institute
Email: jlmesh@list.ru
Russian Federation, Moscow, 119017
References
- Глушков И.В., Лупачик В., Прищепов А.В., Потапов П.В., Пукинская М.Ю., Ярошенко А.Ю., Журавлева И.В. Картирование заброшенных земель в восточной Европе с помощью спутниковых снимков Landsat и Google Earth Engine // Современная наука о растительности: матер. науч. конф. М., 2019. С. 35–37.
- Иванов А.Л., Столбовой В.С. Инициатива “4 промилле” – новый глобальный вызов для почв России // Бюл. Почв. ин-та им. В.В. Докучаева. 2019. Вып. 98. С. 185–202. https://doi.org/10.19047/0136-1694-2019-98-185-202
- Кренке А.Н. Выявление инвариантных состояний агроландшафтов на основе иерархического факторного анализа дистанционной информации // Принципы экологии. 2020. № 3. С. 16–27. https://doi.org/ 10.15393/j1.art.2020.10942
- Кудеяров В.Н. Роль почв в круговороте углерода // Почвоведение. 2005. № 8. С. 915–923.
- Романенков В.А., Сиротенко О.Д., Рухович Д.И., Романенко И.А., Шевцова Л.К., Королева П.В. Прогноз динамики запасов органического углерода пахотных земель Европейской территории России. М.: ВНИИА, 2009. 96 с.
- Урусевская И.С., Алябина И.О., Шоба С.А. Карта почвенно-экологического районирования Российской Федерации. М-б 1 : 8 000 000. Пояснительный текст и легенда к карте. М.: МАКС Пресс, 2020. 100 с.
- Чернова О.В., Голозубов О.М., Алябина И.О., Щепащенко Д.Г. Комплексный подход к картографической оценке запасов органического углерода в почвах России // Почвоведение. 2021. № 3. C. 273–286. https://doi.org/ 10.31857/S0032180X210300
- Batjes N.H. Total carbon and nitrogen in the soils of the world // Eur. J. Soil Sci. 1996. V. 47. P. 151–163. https://doi.org/ 10.1111/j.1365-2389.1996.tb01386.x
- Coleman K., Jenkinson D.S. RothC-26.3 – A model for the turnover of carbon in soil // Evaluation of Soil Organic Matter Models. NATO ASI Series. Berlin: Springer, 1996. V. 38. P. 237-246. https://doi.org/10.1007/978-3-642-61094-3_17
- FAO, ITPS. Global Soil Organic Carbon Map (GSOCmap) Technical Report. Italy, Rome: FAO, 2018. 162 p.
- Gottschalk P., Smith J.U., Wattenbach M., Bellarby J., Stehfest E., Arnell N., Osborn T.J., Jones C., Smith P. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios // Biogeosciences. 2012. V. 9. P. 3151–3171. https://doi.org/ 10.5194/bg-9-3151-2012
- Harris I., Osborn T.J., Jones Ph., Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset // Scientific Data. 2020. V. 7. P. 109. https://doi.org/10.1038/s41597-020-0453-3
- Lal R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security // Science. 2004. V. 304. P. 1623-1627. https://doi.org/ 10.1126/science.1097396
- Lieth H. Modeling the Primary Productivity of the World // Primary productivity of the biosphere. Ecological studies, analysis and synthesis. Berlin: Springer, 1975. P. 237–263.
- Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplo V., et al. Soil carbon 4 per mille // Geoderma. 2017. V. 292. P. 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
- Paustian K., Collier S., Baldock J., Burgess R., Creque J., DeLonge M., Dungait J. et al. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system // Carbon Management. 2019. V. 10. P. 567–587. https://doi.org/10.1080/17583004.2019.16332312019
- Poggio L., De Sousa L.M., Batjes N.H., Heuvelink G.B.M., Kempen B., Ribeiro E., Rossiter D. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty // Soil. 2021. V. 7. P. 217–240. https://doi.org/10.5194/soil-7-217-2021
- Romanenko I.A., Romanenkov V.A., Smith P.P., Smith J.U., Sirotenko O.D., Lisovoi N.V., Shevtsova L.K., Rukhovich D.I., Koroleva P.V. Constructing regional scenarios for sustainable agriculture in European Russia and Ukraine for 2000 to 2070 // Reg Environ Change. 2007. 7. P. 63–77. https://doi.org/10.1007/s10113-007-0032-6
- Romanenkov V.A., Smith J.U., Smith P., Sirotenko O.D., Rukhovitch D.I., Romanenko I.A. Soil organic carbon dynamics of croplands in European Russia: estimates from the “model of humus balance” // Reg Environ Change. 2007. V. 7. P. 93–104. https://doi.org/10.1007/s10113-007-0031-7
- Rukhovich D.I., Koroleva P.V., Vilchevskaya E.V., Romanenkov V., Kolesnikova L. Constructing a spatially-resolved database for modelling soil organic carbon stocks of croplands in European Russia // Reg Environ Change. 2007. 7. P. 51–61. https://doi.org/10.1007/s10113-007-0029-1
- Sanderman J., Hengl T., Fiske G.J. Soil carbon debt of 12,000 years of human land use // Proc Natl Acad Sci USA. 2017. V. 114. 36. P. 9575–9580. https://doi.org/10.1073/pnas.1706103114
- Smith P., Powlson D.S., Glendining M.J., Smith J.U. Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming // Global Change Biology. 2004. V. 4. P. 679–685. https://doi.org/10.1046/j.1365-2486.1998.00185.x
- Smith P., Powlson D.S., Smith J.U., Falloon P., Coleman K. Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture // Global Change Biology. 2000. V. 6. P. 525–539. https://doi.org/10.1046/j.1365-2486.2000.00331.x
- Smith P., Smith J.U., Franko U., Kuka K., Romanenkov V., Shevtsova L. et al. Changes in mineral soil organic carbon stocks in the croplands of European Russia and the Ukraine, 1990–2070; Comparison of three models and implications for climate mitigation // Reg. Environ. Change. 2007. V. 7. P. 105–119. https://doi.org/10.1007/s10113-007-0028-2
- Smith J.O., Smith P., Wattenbach M., Zaehle S., Hiederer R., Jones R.J.A. et al. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080 // Global Change Biology. 2005. V. 11. P. 2141–2152. https://doi.org/10.1111/j.1365-2486.2005.001075.x
- Stolbovoy V., Ivanov A. Carbon Balance in Soils of Northern Eurasia // Soil Carbon. Progress in Soil Science. Cham: Springer. 2014. P. 381–391. https://doi.org/10.1007/978-3-319-04084-4_38
- Technical specifications and country guidelines for Global Soil Organic Carbon Sequestration Potential Map (GSOCseq). Rome: FAO, 2020. 34 р.
- Trenberth K.E., Smith L. The mass of the atmosphere: A constraint on global analyses // J. Climate. 2005. V. 18. P. 864–875. https://doi.org/10.1175/JCLI-3299.1
Supplementary files
