Ecosystem Services Provided by Urban Soils and Their Assessment: a Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The history of the development of the concept of urban soil services, their current list, anthropocentric and pedocentric approaches to their assessment, and experience of application in various cities are considered. At present, the concept of ecosystem services is a comprehensive tool that allows, by analogy, to translate soil information into the sphere of management decision-making, as well as to maintain the sustainability of urban ecosystems by introducing measures to preserve urban soil services. Despite the accumulated experience in methods for assessing ecosystem services and examples of their application in urban planning in individual cities, there is no unified approach to assessing the services of urban soils. The widespread application of this concept is often hampered by insufficient knowledge of the properties of urban soils with their high spatiotemporal variability, as well as by the insufficient development of the approach itself for assessing soil services. However, the active development of theoretical and practical approaches to integrating information about soil characteristics into management is a prerequisite for optimizing the system of soil resource management in cities and towns.

About the authors

K. S. Orlova

Dokuchaev Soil Science Institute

Author for correspondence.
Email: orlkse@yandex.ru
Russian Federation, Moscow

I. Yu. Savin

Dokuchaev Soil Science Institute; Peoples’ Friendship University of Russia

Email: orlkse@yandex.ru
Russian Federation, Moscow; Moscow

References

  1. Ананьева Н.Д., Иващенко К.В., Сушко С.В. Микробные показатели городских почв и их роль в оценке экосистемных сервисов (обзор) // Почвоведение. 2021. № 21. С. 1231–1246. https://doi.org/10.31857/ s 0032180 x 21100038
  2. Бобылев С.Н. Подходы к оценке экосистемных услуг на уровне города и механизмы платежей // Бюл. “На пути к устойчивому развитию России”. 2014. № 70. С. 3–12.
  3. Демографический ежегодник России. M., 2021. 256 c.
  4. Добровольский Г.В., Никитин Е.Д. Функции почв в биосфере и экосистемах. М.: Наука, 1990. 270 с.
  5. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
  6. Конюшков Д.Е. Формирование и развитие концепции экосистемных услуг: обзор зарубежных публикаций // Бюл. Почв. ин-та. 2015. Вып. 80. С. 26–49. https://doi.org/10.19047/0136-1694-2015-80-26-49
  7. Макаров О.А., Цветнов Е.В., Абдулханова Д.Р. История, современное состояние и перспективы развития экономической оценки почв в России (обзор) // Вестник Моск. Ун-та. Сер. 17, почвоведение. 2023. Т. 18. № 2. С. 26–34.
  8. Медведева О.Е. Алгоритм стоимостной оценки экосистемных услуг природных территорий города Москвы // Бюл. “На пути к устойчивому развитию России”. 2014. № 70. С. 13–32.
  9. Почва, город, экология М., 1997. 320 с.
  10. Прокофьева Т. В., Герасимова М. И., Безуглова О.С., Бахматова К.А., Гольева А.А., Горбов С.Н., Жарикова Е.А. и др. Введение почв и почвоподобных образований городских территорий в классификацию почв // Почвоведение. 2014. № 10. С. 1155–1164. https://doi.org/10.7868/ S 0032180 X 14100104
  11. Семенюк О.В., Стома Г.В., Бодровa К.С. Оценка стоимости экосистемных услуг городских ландшафтов (на примере г. Москвы) // Почвоведение. 2021. № 12. С. 1535–1548. https://doi.org//10.31857/ S 0032180 X 21120108
  12. Смагин А.В., Азовцева Н.А., Смагина М.В., Степанов А.Л. Некоторые критерии и методы оценки экологического состояния почв в связи с озеленением городских территорий // Почвоведение. 2006. № 5. С. 603-615.
  13. Смагин А.В. Городские почвы // Природа. 2010. № 7. С. 15–24.
  14. Строганова М.Н., Мягкова А.Д., Прокофьева Т.В. Роль почв в городе // Почвоведение. 1997. № 1. С. 96–101.
  15. Федеральный закон “Градостроительный кодекс Российской Федерации” от 29.12.2004 № 190-ФЗ.
  16. Цветнов Е.В., Макаров О.А., Григорян К.Л., Красильникова В.С. Оценка экосистемных услуг земель историко-культурного назначения (на примере музея-усадьбы Л.Н. Толстого “Ясная Поляна”) // Вест. Моск. ун-та. Сер. 17, почвоведение. 2018. № 4. С. 47–53.
  17. Цели устойчивого развития в Российской Федерации. М., 2022. 87 с.
  18. Шоба С.А., Яковлев Н.Г., Рыбальский Н.Г. Экологическое нормирование и управление качеством почв и земель. М.: НИА-Природа, 2013. 310 с.
  19. Экосистемные услуги России: Прототип национального доклада. Т. 3. Зеленая инфраструктура и экосистемные услуги крупнейших городов России. М.: Изд-во Центра охраны дикой природы, 2021. 112 с.
  20. Яковлев А.С., Макаров О.А., Киселев С.В., Молчанов Э.Н. Эколого-экономическая оценка деградации земель. М.: МАКС Пресс, 2016. 252 с.
  21. Abakumov E., Suleymanov A., Guzov Y., Titov V. Vashuk A., Shestakova E., Fedorova I. Ecosystem services of the cryogenic environments: identification, evaluation and monetisation – A review // J. Water Land Dev. 2022. V. 52. P. 1–8. https://doi.org/10.24425/jwld.2021.13993 7
  22. Adhikari K., Hartemink A.E. Linking soils to ecosystem services – A global review // Geoderma. 2016. V. 262. P. 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009
  23. Babi Almenar J., Rugani B., Geneletti D., Brewer T. Integration of ecosystem services into a conceptual spatial planning framework based on a landscape ecology perspective // Landscape Ecology. 2018. V. 33. P. 2047–2059. https://doi.org/10.1007/s10980-018-0727-8
  24. Band L., Cadenasso M., Grimmond C., Grove M., Pickett S.T.A. Heterogeneity in urban ecosystems: patterns and process. ecosystem function in heterogeneous landscapes // Ecosystem Function in Heterogeneous Landscapes. 2005. P. 257-278. https://doi.org/10.1007/0-387-24091-8_13
  25. Bartkowski B., Bartke S., Helming K., Paul C., Techen A.-K., Hansjürgens B. Potential of the economic valuation of soil-based ecosystem services to inform sustainable soil management and policy // PeerJ. 2020. V. 8. P. e8749. https://doi.org/10.7717/peerj.8749
  26. Baveye Ph., Baveye J., Gowdy J. Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground // Front. Environ. Sci. 2016. V. 4. P. 41. https://doi.org/10.3389/fenvs.2016.00041
  27. Blanchart A., Consalès J.-N., Séré G., Schwartz C. Consideration of soil in urban planning documents – a French case study // JSS. 2019. V. 19. P. 3235–3244. https://doi.org/10.1007/s11368-018-2028-x
  28. Blanchart A., Séré G., Cherel J., Warot G., Stas M., Consalès J.-N., Morel J.-L., Schwartz C. Towards an operational methodology to optimize ecosystem services provided by urban soils // Landsc Urban Plan. 2018. V. 176. P. 1–9. https://doi.org/10.1016/j.landurbplan.2018.03.019
  29. Blum W.E.H. Soil Protection concept of the Council of Europe and integrated soil research // Soil Environ. 1993. V. 1. P. 37–47. https://doi.org/10.1007/978-94-011-2008-1_5
  30. Bongaarts J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. Population and Development Review. 2019. 22 p. https://doi.org/10.1111/padr.12283
  31. Borgogno Mondino E., Fabietti G., Ajmone Marsan F. Soil quality and landscape metrics as driving factors in a multi-criteria GIS procedure for peri-urban land use planning // UFUG. 2015. V. 14. № 4. P. 743–750. https://doi.org/10.1016/j.ufug.2015.07.004
  32. Brander L.M. Guidance manual on value transfer methods for ecosystem services. United Nations Environment Programme. Nairobi, Kenya: UNON, 2013. 77 p.
  33. Brander L., Van Beukering P.J.H., Balzan M., Broekx S., Liekens I., Marta-Pedroso C., Szkop Z., Report on Economic Mapping and Assessment Methods for Ecosystem Services Deliverable D3.2 // EU Horizon 2020 ESMERALDA Project, Grant agreement. 2018. 67 p.
  34. Bünemann E. K., Bongiorno G., Bai Zh., Creamer R., Deyn G.B., de Goede R., Fleskens L., et al. Soil quality – A critical review // Soil Biol. Biochem. 2018. V. 120. P. 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030
  35. Calzolari C., Tarocco P., Lombardo N., Marchi N., Ungaro F. Assessing soil ecosystem services in urban and peri-urban areas: from urban soils survey to providing support tool for urban planning // Land Use Policy. 2020. V. 99. P. 105037. https://doi.org/10.1016/j.landusepol.2020.105037
  36. Cecchi C. Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities. Final report of the Horizon 2020 expert group on nature-based solutions and re-naturing cities. Luxembourg: Publications Office of the European Union. 2015. 75 p. https://doi.org/10.2777/479582
  37. Chapman E.J., Small G.E., Shrestha P. Investigating potential hydrological ecosystem services in urban gardens through soil amendment experiments and hydrologic models // Urban Ecosyst. 2022. V. 25. P. 867–878. https://doi.org/10.1007/s11252-021-01191-7
  38. Chu N., Zhang P., Wu X. Spatiotemporal evolution characteristics of urbanization and its coupling coordination degree in Russia – perspectives from the population, economy, society, and eco-environment // Environ. Sci. Pollut. Res. 2022. V. 29. P. 1–18. https://doi.org/10.1007/s11356-022-20215-z
  39. Costanza R., d’Are R., de Groot R., Farber S., Grasso M., Hannon B., Limburg K. et al. The value of the world’s ecosystem services and natural capital // Nature. 1997. V. 387. P. 253–260. https://doi.org/10.1038/387253a0
  40. Costanza R. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability // Ecosyst. Serv. 2020. V. 43. P. 101096. https://doi.org/10.1016/j.ecoser.2020.101096
  41. Costanza R., Groot R., Braat L., Fioramonti L., Sutton P., Farber S., Grasso M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? // Ecosyst. Serv. 2016. V. 28. P. 1-16. https://doi.org/10.1016/j.ecoser.2017.09.008
  42. Cortinovis C., Geneletti D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions // Land Use Policy. V. 70. P. 298–312. https://doi.org/10.1016/j.landusepol.2017.10.017
  43. Delibaş M., Tezer A., Kuzniecow Bacchin T. Towards embedding soil ecosystem services in spatial planning // Cities. 2021. V. 113. P. 103150. https://doi.org/10.1016/j.cities.2021.103150
  44. DeWitt T., Berry W., Canfield T., Fulford R., Harwell M., Hoffman J., Johnston J. The Final Ecosystem Goods & Services (FEGS) Approach: A Beneficiary-Centric Method to Support Ecosystem-Based Management / Ecosystem-Based Management, Ecosystem Services and Aquatic Biodiversity / Eds. O’Higgins T.G. et al. Springer, 2020. P. 127–145. https://doi.org/10.1007/978-3-030-45843-0_7
  45. Díaz S., Demissew S., Carabias J., Joly C., Lonsdale M., Ash N. The IPBES conceptual framework – connecting nature and people // Curr. Opin. Environ. Sustain. 2015. V. 14. P. 1–16. https://doi.org/10.1016/j.cosust.2014.11.002
  46. Drobnik T., Schwaab J., Grêt-Regamey A. Moving towards integrating soil into spatial planning: No net loss of soil-based ecosystem services // J. Environ. Manage. 2020. V. 263. P. 110406. https://doi.org/10.1016/j.jenvman.2020.110406
  47. Drobnik T., Greiner L., Keller A., Grêt-Regamey A. Soil quality indicators – from soil functions to ecosystem services // Ecol. Indic. 2018. V. 94. P. 151–169. 10.1016/j.ecolind.2018.06.052' target='_blank'>https://doi.org/doi: 10.1016/j.ecolind.2018.06.052
  48. Dominati E. Patterson M., Mackay A. A framework for classifying and quantifying the natural capital and ecosystem services of soils // Ecol. Econ. 2010. V. 69. P. 1858–1868. https://doi.org/10.1016/j.ecolecon.2010.05.002
  49. Dominati E. Natural capital and ecosystem services of soils // Ecosystem services in New Zealand – conditions and trends. 2013. 11 p.
  50. Dominati E., Robinson D.A., Marchant S.C., Bristow K.L., Mackay A.D. Natural Capital, Ecological Infrastructure, and Ecosystem Services in Agroecosystems. Encyclopedia of Agriculture and Food Systems. 2014. P. 245–264. https://doi.org/10.1016/b978-0-444-52512-3.00243-6
  51. EEA Report. Healthy environment, healthy lives: how the environment influences health and well-being in Europe. Luxembourg: Publications Office of the European Union, 2020. 172 p.
  52. Edmondson J.L., Davies Z.G., Mchugh N., Gaston K.J., Leake J.R. Organic carbon hidden in urban ecosystems // Sci. Rep. 2012. V. 2. P. 963. https://doi.org/10.1038/srep00963
  53. Egoh B., Drakou E., Dunbar M., Maes J., Willemen L. Indicators for mapping ecosystem services: a review. Luxembourg: Publications Office of the European Union, 2012. 113 p. https://doi.org/10.2788/41823
  54. Foldal C., Leitgeb E., Michel K. Characteristics and Functions of Urban Soils // Chapter in book: Soils in Urban Ecosystem. 2022. P. 25–45.
  55. Fossey M., Angers D., Bustany C., Cudennec Ch., Durand P., Gascuel-Odoux Ch., Jaffrezic A., et al. A Framework to Consider Soil Ecosystem Services in Territorial Planning // Front. Environ. Sci. 2020. V. 8. P. 1–12. https://doi.org/10.3389/fenvs.2020.00028
  56. Gardi C., Florczyk A.J., Scalenghe R. Outlook from the soil perspective of urban expansion and food security // Heliyon. 2021. V. 7. P. e05860. https://doi.org/10.1016/j.heliyon.2020.e05860
  57. Gholamhosseinian A., Bashtia M.H., Sepeh, A. Soil Quality: Concepts, Importance, Indicators, and Measurement // Soils in Urban Ecosystem. Springer, Singapore / Eds. Rakshit A.et al. 2022. P. 161–187. https://doi.org/10.1007/978-981-16-8914-7_8
  58. Guilland C., Maron P.-A., Damas O., Ranjard L. Biodiversity of urban soils for sustainable cities // Environ. Chem. Lett. 2018. V. 16. P. 1267–1282. https://doi.org/10.1007/s10311-018-0751-6
  59. Haase D., Larondelle N., Andersson E. et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation // AMBIO. 2014. V. 43. P. 413–433. https://doi.org/10.1007/s13280-014-0504-0
  60. Haines-Young R., Potschin M.B. Common international classification of ecosystem services (CICES) V5.1 and guidance on the application of the revised structure // A Policy Brief. One Ecosystem. V. 3. P. e27108. https://doi.org/10.3897/oneeco.3.e27108
  61. Haines-Young R., Potschin-Young M. Revision of the Common International Classification for Ecosystem Services (CICES V5.1): A Policy Brief. // One Ecosystem. 2018. V. 3. P. e27108. https://doi.org/10.3897/oneeco.3.e27108
  62. Halecki W., Stachura T. Evaluation of soil hydrophysical parameters along a semiurban small river: Soil ecosystem services for enhancing water retention in urban and suburban green areas // Catena. 2020. V. 196. P. 104910. https://doi.org/10.1016/j.catena.2020.104910
  63. Hasan S., Shi W., Zhu X. Impact of land use land cover changes on ecosystem service value – A case study of Guangdong, Hong Kong, and Macao in South China // PLoS ONE. 2020. V. 15. P. e0231259. https://doi.org/10.1371/journal.pone.0231259
  64. He C., Zhang D., Huang Q., Zhao Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models // Environ. Model Softw. 2016. V. 75. P. 44–58. https://doi.org/10.1016/j.envsoft.2015.09.015
  65. Hyun J., Kim Y. J., Yoo G. A method for soil quality assessment in the metropolitan greenery: A comprehensive view of ecosystem services and soil functions // MethodsX. 2023. V. 10. P. 102102. https://doi.org/10.1016/j.mex.2023.102102
  66. Ivashchenko K., Lepore E., Vasenev V., Ananyeva N., Demina S., Khabibullina F., Vaseneva I., et al. Assessing Soil-Like Materials for Ecosystem Services Provided by Constructed Technosols. Land 2021. V. 10. P. 1185. https://doi.org/10.3390/land10111185
  67. Jónsson J.O., Davíðsdótti B.R. Classification and valuation of soil ecosystem services // Agric. Syst. 2016. V. 145. P. 24 – 38. https://doi.org/10.1016/j.agsy.2016.02.010
  68. Kadaverugu A., Rao Ch., Gorthi K. Quantification of flood mitigation services by urban green spaces using InVEST model: a case study of Hyderabad city, India // MESE. 2021. V. 7. P. 589–602. https://doi.org/10.1007/s40808-020-00937-0
  69. Karlen D.L., Stott D.E. A framework for evaluating physical and chemical indicators of soil quality // Defining soil quality for a sustainable environment. The Soil Science Society of America, Inc. 1994. № 35. P. 53 – 72. https://doi.org/10.2136/sssaspecpub35.c4
  70. Keesstra S., Bouma J., Wallinga J., Tittonell P.A., Smith Pete., Cerdà A., Montanarella L., et al. FORUM paper: The significance of soils and soil science towards realization of the UN sustainable development goals (SDGs) // SOIL Discuss. V. 2. P. 111 – 128. https://doi.org/10.5194/soil-2015-88
  71. Kumar K., Hundal L. Soil in the City: Sustainably Improving Urban Soils // J. Environ. Qual. 2016. V. 45. P. 2–8. https://doi.org/10.2134/jeq2015.11.0589
  72. Lam S.T., Conway T.M. Ecosystem services in urban land use planning policies: A case study of Ontario municipalities // J. Land Use Sci. 2018. V. 77. P. 641–651. https://doi.org/10.1016/j.landusepol.2018.06.020
  73. Latawiec A., Rodrigues A., Korys K., Medeiros B. Methodical Aspects of Soil Ecosystem Services Valuation // J. Agric. Eng. 2022. V. 26. P. 39–49. https://doi.org/10.2478/agriceng-2022-0004
  74. Li G. Sun G.-X., Ren Y., Luo X.-S. Urban soil and human health: A review // Eur. J. Soil Sci. 2018. V. 69. P. 196–215. https://doi.org/10.1111/ejss.12518
  75. Lima A.C.R., Brussaard L., Totola M.R., Hoogmoed W.B., de Goede R.G.M. A functional evaluation of three indicator sets for assessing soil quality // Appl. Soil Ecol. 2013. V. 64. P. 194–200. https://doi.org/10.1016/j.apsoil.2012.12.009
  76. Liu R., Wang M.-E., Chen W. The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing // Landsc. Urban Plan. 2018. V. 169. P. 241–249. https://doi.org/10.1016/j.landurbplan.2017.09.002
  77. Louwagie G., Kibblewhite M., Morris J., Burghardt W., Hoeke S., Manning D., Gregersen J. et al. Soil resource efficiency in urbanised areas – analytical framework and implications for governance // EEA report. 2016. V. 7. 95 p. https://doi.org/10.2800/020840
  78. Mamehpour N., Rezapour S., Ghaemian N. Quantitative assessment of soil quality indices for urban croplands in a calcareous semi-arid ecosystem // Geoderma. 2021. V. 382. P. 114781. https://doi.org/10.1016/j.geoderma.2020.114781
  79. MEA – Millennium Ecosystem Assessment. Ecosystems and human well-being: a framework for assessment. Washington DC: Island Press, 2003. 155 p.
  80. Morel J.-L., Chenu C., Lorenz K. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs) // J. Soils Sediments. 2015. V. 15. P. 1659–1666. https://doi.org/10.1007/s11368-014-0926-0.
  81. O’Riordan R., Davies J., Stevens C., Quinton J.N., Boyko C. The ecosystem services of urban soils: a review // Geoderma. 2021. V. 395. P. 115076. https://doi.org/10.1016/j.geoderma.2021.115076
  82. Pascual U., Balvanera P., Díaz S., Pataki G., Roth E., Stenseke M., Watson R. T. et al. Valuing nature’s contributions to people: the IPBES approach // Curr. Opin. Environ. Sustain. 2017. V. 26–27. P. 7–16. https://doi.org/10.1016/j.cosust.2016.12.006
  83. Paul S., Rakshit A. Classification and Functional Characteristics of Urban Soil // Soils in Urban Ecosystem. Springer, 2022. https://doi.org/10.1007/978-981-16-8914-7_2
  84. Pereira P., Bogunovic I., Munoz-Rojas M., Brevik E.C. Soil ecosystem services, sustainability, valuation and management // Curr. Opin. Environ. Sci. Health. 2018. V. 5. P. 7–13. https://doi.org/10.1016/j.coesh.2017.12.003
  85. Potschin-Young M., Haines-Young R., Görg C., Heink U., Jax K., Schleyer C. Understanding the role of conceptual frameworks: Reading the ecosystem service cascade // Ecosyst. Serv. 2016. V. 29. P. 428–440. https://doi.org/10.1016/j.ecoser.2017.05.015
  86. Pouyat R., Szlavecz K., Yesilonis I., Groffman P., Schwarz K. Chemical, physical and biological characteristics of urban soils // Urban Ecosystem Ecology. Agronomy Monograph 55. Madison, WI: American Society of Agronomy. 2010. P. 119–152. https://doi.org/10.2134/agronmonogr55.c7
  87. Pozza L.E., Field D.J. The science of Soil Security and Food Security // Soil Security. 2020. V. 1. P. 100002. https://doi.org/10.1016/j.soisec.2020.100002
  88. Rate A. W. Urban Soils / Progress in Soil Science: Springer, 2022. 451 p.
  89. Rees F., Dagois R., Derrien D., Fiorelli J.-L., Watteau F., Morel J.-L., Schwartz C. et al. Storage of carbon in constructed technosols: in situ monitoring over a decade // Geoderma. 2018. V. 337. P. 641–648. https://doi.org/10.1016/j.geoderma.2018.10.009
  90. Rinot O., Levy G.J., Steinberger Y., Svoray T., Eshel G. Soil health assessment: a critical review of current methodologies and a proposed new approach // Sci. Total Environ. 2019. V. 648. P. 1484–1491. https://doi.org/10.1016/j.scitotenv.2018.08.259
  91. Robinson D., Fraser I., Dominati E., Davidsdottir B., Jónsson J., Jones L., Jones S., et al. On the Value of Soil Resources in the Context of Natural Capital and Ecosystem Service Delivery // Soil Sci. Soc. Am. J. 2014. V. 78. P. 685-700. https://doi.org/10.2136/sssaj2014.01.0017.5
  92. Rodríguez-Espinosa T., Navarro-Pedreño J., Gómez Lucas I., Manuel Miguel J., Bech-Borras J., Zorpas A. Urban areas, human health and technosols for the green deal // Environ. Geochem. Health. 2021. V. 43. P. 5065–5086. https://doi.org/10.1007/s10653-021-00953-8
  93. Ronchi S., Salata S., Arcidiacono A. Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies // Sustain. Cities Soc. 2020. V. 63. P. 102459. https://doi.org/10.1016/j.scs.2020.102459
  94. Sapkota M., Young J., Coldren C., Slaughter L., Longing S. Soil physiochemical properties and carbon sequestration of Urban landscapes in Lubbock, TX, USA // Urban For. Urban Green. 2020. V. 56. P. 126847. https://doi.org/10.1016/j.ufug.2020.126847
  95. Schindelbeck R. R., van Es H. M., Abawi G. S., Wolfe D. W., Whitlow T. W., Gugino B. K., Idowu O. J., Moebius-Clune B. N. Comprehensive assessment of soil quality for landscape and urban management // Landsc. Urban Plan. 2008. V. 88. № 2–4. P. 73–80. https://doi.org/10.1016/j.landurbplan.2008.08.006
  96. Shen J., Li S., Liang Z., Liu L., Li D., Wu S. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration // Ecosyst. Serv. 2020. V. 43. 15 pp. https://doi.org/10.1016/j.ecoser.2020.101103
  97. Sefati Z., Khalilimoghadam B., Nadian H. Assessing urban soil quality by improving the method for soil environmental quality evaluation in a saline groundwater area of Iran // Catena. 2019. V. 173. P. 471–480. https://doi.org/10.1016/j.catena.2018.10.040
  98. Stumpe B., Bechtel B., Heil J., Jörges Ch., Jostmeier A., Kalks F., Schwarz K., et al. Soil texture mediates the surface cooling effect of urban and peri-urban green spaces during a drought period in the city area of Hamburg // Sci. Total Environ. 2023. V. 897. 19 p. https://doi.org/10.1016/j.scitotenv.2023.165228
  99. Tan J., Peng L., Wu W., Huang Q. Mapping the evolution patterns of urbanization, ecosystem service supply–demand, and human well-being: A tree-like landscape perspective // Ecol. Indic. 2023. V. 154. P. 110591. https://doi.org/10.1016/j.ecolind.2023.110591
  100. Tang Y., Gao Ch., Wu F.-Y. Urban Ecological Corridor Network Construction: An Integration of the Least Cost Path Model and the InVEST Model // ISPRS Int. J. Geoinf. 2020. V. 9. № 33. P. 9010033. https://doi.org/10.3390/ijgi9010033
  101. TEEB The Economics of Ecosystems and Biodiversity Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB. Malta: Progress Press, 2010. 39 p.
  102. Teixeira da Silva R., Fleskens L., van Delden H. Incorporating soil ecosystem services into urban planning: status, challenges and opportunities // Landsc. Ecol. 2018. V. 33. P. 1087–1102. https://doi.org/10.1007/s10980-018-0652-x
  103. Tresch S., Moretti M., Le Bayon R.-C., Mäder P., Zanetta A., Frey D. A. Gardener’s influence on urban soil quality // Front. Environ. Sci. 2018. V. 6. P. 25. https://doi.org/10.3389/fenvs.2018.00025
  104. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects 2019. N.Y.: United Nations, 2019. 47 p.
  105. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations, 2019. 38 p.
  106. United Nations. System of Environmental-Economic Accounting – Ecosystem Accounting (SEEA EA). N.Y.: United Nations, 2021. 393 p.
  107. Vasenev V., van Oudenhoven A., Romzaykina O., Hajiaghaeva R. The ecological functions and ecosystem services of urban and technogenic soils: from theory to practice (a review) // Eurasian Soil Sci. 2018. V. 51. P. 1119–1132. https://doi.org/10.1134/S1064229318100137
  108. Vasenev V., Varentsov M., Konstantinov P. Projecting urban heat island effect on the spatial-temporal variation of microbial respiration in urban soils of Moscow megalopolis // Sci. Total Environ. 2021. V. 768. P. 147457. https://doi.org/10.1016/j.scitotenv.2021.147457
  109. Wang Ch., Wang X., Wang Y., Zhan J., Chu X., Teng Y., Wei L. et al. Spatio-temporal analysis of human wellbeing and its coupling relationship with ecosystem services in Shandong province, China // J. Geogr. Sci. 2023. V. 33. P. 392-412. https://doi.org/10.1007/s11442-023-2088-8
  110. Wang R., Xu R., Bai Y., Alatalo J., Yang Z., Yang W., Yang Z. Impacts of Urban Land Use Changes on Ecosystem Services in Dianchi Lake Basin // Sustain. Sci. 2021. V. 13. P. 4813. https://doi.org/10.3390/su13094813
  111. Wolff G. Das Bodenschutzkonzept Stuttgart (BOKS). Stuttgart: Amt für Umweltschutz, 2006. 72 p.
  112. Qiao X., Li Z., Lin J., Wang H., Zheng S., Yang S. Assessing current and future soil erosion under changing land use based on InVEST and FLUS models in the Yihe River Basin, North China // Int. Soil Water Conserv. Res. 2023. https://doi.org/10.1016/j.iswcr.2023.07.001
  113. Ye H., Sun C., Wang K., Zhang G.-Q., Lin T., Yan H. The role of urban function on road soil respiration responses // Ecol. Indic. 2018. V. 85. P. 271-275. https://doi.org/10.1016/j.ecolind.2017.10.004
  114. Zhang Z., Shen Z., Liu L., Zhang Y., Yu C., Cui L., Gao Y. Integrating ecosystem services conservation into the optimization of urban planning policies in eco-fragile areas: A scenario-based case study // Cities. 2023. V. 134. P. 1668. https://doi.org/10.1016/j.cities.2023.104200

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Conceptual scheme of linking soil characteristics and functions with services (according to [22, 55, 91])

Download (254KB)

Copyright (c) 2024 Russian Academy of Sciences