Effect of Different Synthetic Resins on Soil Nano-and Microstructure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The use of synthetic and natural resins in the fixation of organic-mineral matter for further studies is common, e.g. in the micromorphological study of soils, since the procedure of making thin sections includes the impregnation of the sample with aggregates. At the same time, their effect on the soil structure has not been known until now. In this article, an experiment to study the effect of synthetic and natural resins on the nano-and microstructure of soil during impregnation is set up for the first time. Using small-angle X-ray scattering and computed tomography techniques, the first data are obtained on the characteristics of resins frequently used in laboratories, as well as on their effects on the structure of soil samples. The X-ray “transparency” of fixing materials was detected. Subsequent impregnation of AU horizon fraction from Haplic Chernozems of Kursk region by them allowed to establish the influence of epoxy resin on the change of size of nanostructural heterogeneities of soil. The experiment with different horizons of Protosalic Solonetz allowed to establish an increase in the size of nanoheterogeneities with depth in the trend of native soil in relation to the trend of impregnated soil. At the micro level, a decrease in microporosity within the first per cent after polymerisation of the curing agent was proved. The nanostructure of soil monoliths and separate fractions were investigated for the first time at this station. The above results can be used in sample preparation and further analysis of organic-mineral objects (soil, rock, ground) for a number of studies that require fixation of the substance structure at different dimensional levels.

About the authors

R. E. Musaelyan

Dokuchaev Soil Science Institute

Author for correspondence.
Email: romaniero1@gmail.com
Russian Federation, Moscow

K. N. Abrosimov

Dokuchaev Soil Science Institute

Email: romaniero1@gmail.com
Russian Federation, Moscow

K. A. Romanenko

Dokuchaev Soil Science Institute

Email: romaniero1@gmail.com
Russian Federation, Moscow

References

  1. Абросимов К.Н., Герке К.Н., Семенков И.Н., и Корост Д.В. Применения алгоритма Оцу при сегментации порового пространства почв по томографическим данным // Почвоведение. 2021. № 4. С. 475–488. http s: //d o i.o rg/10.31857/ S 0032180 X 21040031
  2. Бернштейн П.С., Буняк Н.Д. Пропитка заготовок для изготовления безрельефных аншлифов составами на основе сингенетических смол и монтирование их в стандартные шашки // Тр. ЦНИГРИ цвет. и благород. металлов. 1974. № 142. С. 3–47.
  3. Калинин Т.Г., Ивонин Д., Абросимов К.Н, Грачев Е.А., Сорокина Н.В. Анализ томографических изображений структуры порового пространства почв методами интегральной геометрии // Почвоведение. 2021. № 9. С. 1113–1123. https://doi.org/10.31857/ S 0032180 X 21090033
  4. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
  5. Классификация и диагностика почв СССР. М.: Колос, 1977. 224 с.
  6. Коненко В.Ф. Методика изготовления прозрачных препаратов для исследования на микрозонде // Минералогия и петрохимия интрузивных комплексов Сибири. Новосибирск: Наука, 1982, 156 с.
  7. Лебедева М.П., Плотникова О.О., Чурилин Н.А., Романис Т.В., Шишков В.А. Влияние состава и свойств хвалынских отложений на эволюцию почв Волго-Уральского междуречья (по результатам минералогических и микроморфологических исследований) // Геоморфология. 2022. № 53. С. 48–59. https://doi.org/10.31857/ S 0435428122050091
  8. Михайленко Ю. В. Изготовление прозрачных и полированных шлифов. Методические указания. Ухта: УГТУ, 2012. 43 с.
  9. Мусаэлян Р.Э. Связь между данными малоуглового рентгеновского рассеяния и рентгеновской дифракции при определении минерального состава солонца (Джаныбекский стационар) // Глины и глинистые минералы – 2023. VI Рос. c ов. по глинам и глинистым минералам “ГЛИНЫ-2023”. СПб., 13–16 июня 2023 г. М.: ИГЕМ РАН, 2023. 232 с.
  10. Полевой определитель почв России. М.: Почв. ин-т им. В.В. Докучаева, 2008. 182 с.
  11. Роде А.А., Польский М.Н. Почвы Джаныбекского стационара, их морфологическое строение, механический и химический состав и физические свойства // Почвы полупустыни Северо-Западного Прикаспия и их мелиорация. 1961. Т. 56. С. 3–214.
  12. Хитров Н.Б., Герасимова М.И. Диагностические горизонты в классификации почв России: версия 2021 г. // Почвоведение. 2021. № 8. С. 899–910. https://doi.org/0.31857/S0032180X22010087
  13. Хитров Н.Б., Герасимова М.И. Предлагаемые изменения в классификации почв России: диагностические признаки и почвообразующие породы // Почвоведение. 2022. № 1. С. 3–14. https://doi.org/10.31857/S0032180X22010087
  14. Bahadur J., Radlinski A.P., Melnichenko Y.B., Mastalerz M., Schimmelmann A. Small-angle and ultrasmall-angle neutron scattering (SANS/USANS) study of New Albany shale: a treatise on microporosity // Energy Fuels. 2015. V. 29. P. 567–576. https://doi.org/10.1021/ef502211w
  15. Bendle J., Palmer A., Carr S. A comparison of micro-CT and thin section analysis of Lateglacial glaciolacustrine varves from Glen Roy, Scotland // Quarter. Sci. Rev. 2015. P. 114. https://doi.org/10.1016/j.quascirev.2015.02.008
  16. Neil C.W., Hjelm R.P., Hawley M.E., Watkins E.B., Cockreham C., Wu D., Mao Y. Probing oil recovery in shale nanopores with small-angle and ultra-small-angle neutron scattering // Int.J. Coal Geology. 2022. V. 253. P. 103950. https://doi.org/10.1016/j.coal.2022.103950
  17. Elliot T., Heck R. A comparison of optical and X-ray CT technique for void analysis in soil thin section // Geoderma. 2007. V. 141. P. 60–70. https://doi.org/10.1016/j.geoderma.2007.05.001.
  18. Fomin D.S., Yudina A.V., Romanenko K.A., Abrosimov K.N., Karsanina M.V., Gerke K.M. Soil pore structure dynamics under steady-state wetting-drying cycle // Geoderma. 2023. V. 432. P. 116401. https://doi.org/10.1016/j.geoderma.2023.116401
  19. Fomin D., Timofeeva M., Ovchinnikova O., Valdes-Korovkin I., Holub A., Yudina A. Energy-Based Indicators of Soil Structure by Automatic Dry Sieving // Soil Till. Res. 2021. V. 214. P. 105183. https://doi.org/10.1016/j.still.2021.105183
  20. Ganyushkin D., Lessovaia S., Vlasov D., Kopitsa, G., Almásy L., Chistyakov K., Panova E. Application of Rock Weathering and Colonization by Biota for the Relative Dating of Moraines from the Arid Part of the Russian Altai Mountains // Geosciences (Switzerland). 2021. V. 11(8). P. 342. https://doi.org/10.3390/geosciences11080342
  21. Greenland D.J. Soil damage by intensive arable cultivation: temporary or permanent? // Phil. Trans. Royal Soc. 1977. V. 281. P. 193–208.
  22. Hammersley A.P. FIT2D: a multi-purpose data reduction, analysis and visualization program // J. Appl. Crystallogr. 2016. V. 49. P. 646–652. https://doi.org/10.1107/S1600576716000455
  23. Hildebrand T., Ruegsegger P. A new method for the model independent assessment of thickness in three dimensional images // J. Microsc. 1997. V. 185. P. 67–75. https://doi.org/10.1046/j.1365-2818.1997.1340694.x
  24. IUSS Working Group WRB 2015 World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps / World Soil Resources Reports no 106. Rome: FAO. 2015.
  25. Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis // J. Appl. Crystallogr. 2003. V. 36. P. 1277–1282. https://doi.org/10.1107/S0021889803012779
  26. Lebedeva M.P., Golovanov D.L., Abrosimov K.N. Micromorphological diagnostics of pedogenetic, eolian, and colluvial processes from data on the fabrics of crusty horizons in differently aged extremely aridic soils of Mongolia // Quarter. Int. 2016. V. 418. P. 75–83. https://doi.org/10.1016/j.quaint.2015.12.042
  27. Lessovaia S.N., Gerrits R., Gorbushina A.A., Polekhovsky Y.S., Dultz S., Kopitsa G.G. Modeling Biogenic Weathering of Rocks from Soils of Cold Environments // Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. Lecture Notes in Earth System Sciences. 2020. V. 789. P. 501–515. https://doi.org/10.1007/978-3-030-21614-6_27
  28. Lessovaia S., Plötze M., Inozemzev S., Goryachkin S. Traprock transformation into clayey materials in soil environments of the Central Siberian Plateau, Russia // Clays and Clay Minerals. 2016. V. 64. P. 668–676. https://doi.org/10.1346/CCMN.2016.064042
  29. Haili L., Anneleen F., Julie D., Bart P., Swennen R. X-ray high resolution micro-CT of thin sections: A new calibration approach between classical // EGU General Assembly Conference Abstracts. 2009.
  30. Mady A.Y., Shein E.V., Abrosimov K.N., Skvortsova E.B. X-ray computed tomography: Validation of the effect of pore size and its connectivity on saturated hydraulic conductivity // Soil Environ. 2021. V. 40. P. 1–8. https://doi.org/10.25252/SE/2021/182420
  31. Mady A.Y., Shein E.V., Skvortsova E.B., Abrosimov K.N. Evaluate the impact of porous media structure on soil thermal parameters using x-ray computed tomography // Eurasian Soil Science. 2020. V. 53. P. 1752–1759. https://doi.org/10.1134/S1064229320120066
  32. Nguyen T.X, Bhatia S.K. Characterization of accessible and inaccessible pores in microporous carbons by a combination of adsorption and small angle neutron scattering // Carbon. 2012. V. 50. P. 3045–54. https://doi.org/10.1016/j.carbon.2012.02.091
  33. Peters G.S., Zakharchenko O.A., Konarev P.V., Karmazikov Y.V., Smirnov M.A., Zabelin A.V., Mukhamedzhanov E.H. The small-angle X-ray scattering beamline BioMUR at the Kurchatov synchrotron radiation source // Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2019. V. 945. P. 162616. https://doi.org/10.1016/J.NIMA.2019.162616
  34. Peters G.S., Gaponov Y.A., Konarev P. V., Marchenkova M.A., Ilina K.B., Volkov V. V., Pisarevsky Y. V. Upgrade of the BioMUR beamline at the Kurchatov synchrotron radiation source for serial small-angle X-ray scattering experiments in solutions // Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2022.V. 1025. P. 166170. https://doi.org/10.1016/J.NIMA.2021.166170
  35. Plotnikova O., Romanis T., Kust P. Comparison of digital image analysis methods for morphometric characterization of soil aggregates in thin sections // Dokuchaev Soil Bulletin. 2020. V. 104. P. 199–222. h ttps://doi.org/10.19047/0136-1694-2020-104-199-222
  36. Radlinski A.P, Radlinska E.Z. The microstructure of pore space in coals of different rank: a small angle scattering and SEM study // Coalbed methane: scientific, environmental and economic evaluation / Eds. Mastalerz M. et al. Dordrecht, 1999. P. 329–365. https://doi.org/10.1007/978-94-017-1062-6_20
  37. Remy E., Thiel E. Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D // Pattern Recognition Lett. 2002. V. 23. P. 649–661. https://doi.org/10.1016/S0167-8655(01)00141-6
  38. Ruppert L.F., Sakurovs R., Blach T.P., He L., Melnichenko Y.B., Mildner D.F.R., Alcantar-Lopez L. A USANS/SANS Study of the Accessibility of Pores in the Barnett Shale to Methane and Water // Energy and Fuels. 2013. V. 27. P. 772–779. https://doi.org/10.1021/EF301859S
  39. Stirck G.B. Some aspects of soil shrinkage and effect of cracking upon water entry into the soils // Austr. J. Agric. Res. 1954. P. 279-296. https://doi.org/10.1071/AR9540279
  40. Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria // J. Appl. Crystallogr. 1992. V. 25. P. 495–503. https://doi.org/10.1107/S0021889892001663
  41. Tsukimura K., Miyoshi Y., Takagi T., Suzuki M., Wada S. Amorphous nanoparticles in clays, soils and marine sediments analyzed with a small angle X-ray scattering (SAXS) method // Scientific Rep. 2021. V. 11. https://doi.org/10.1038/s41598-021-86573-9
  42. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone // Bone. 1999. V. 25. P. 55–60. https://doi.org/10.1016/s8756-3282(99)00098-8
  43. Volkov V.V., Konarev P.V., Kryukova A.E. Combined Scheme of Reconstruction of the Particle Size Distribution Function Using Small-Angle Scattering Data // JETP Lett. 2021. V. 1129. P. 591–595. https://doi.org/10.1134/S0021364020210110
  44. Young I.T., Gerbrands J.J., van Vliet L.J. Fundamentals of Image Processing. 2004. P. 112.
  45. Zhao J., Jin Zhijun, Hu Q., Jin Zhenkui, Barber T.J., Zhang Y., Bleuel M. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs // Sci. Rep. 2017. V. 7. P. 1–16. https://doi.org/10.1038/S41598-017-15362-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. 3D-registration (exact superposition) of two stacks of tomographic data - soil samples before (dimmer image) and after pouring with epoxy resin. The area of overlap, aka the area of calculation of volumetric indices, is brighter on vertical (top row) and horizontal (bottom row) slices. From left to right: a - SEL horizon with AKL features (section 1-22MPL), b - BSN (size 2-22MPL), c - BIq (section 4-22MPL). Coloured lines in the image are technical axes of stack matching and boundaries of the conditional area of automatic matching of two stacks, of which blue and green lines are vertical sections through the centre of the structure, red horizontal lines are the location of the horizontal slice represented in the bottom row

Download (795KB)
3. Fig. 2. Block diagram of the experiment to evaluate the effect of aggregate on soil pore space character using SAXS and CT methods

Download (656KB)
4. Fig. 3. Pairwise distance distribution functions P(R) of the samples from Table 2 and air (9 on the legend) obtained from the data on heterogeneity sizes. The heterogeneity size data were obtained by integrating one-dimensional MURR curves in PRIMUS. R - size of heterogeneities, nm

Download (930KB)

Copyright (c) 2024 Russian Academy of Sciences