Effect of Different Synthetic Resins on Soil Nano-and Microstructure
- Authors: Musaelyan R.E.1, Abrosimov K.N.1, Romanenko K.A.1
-
Affiliations:
- Dokuchaev Soil Science Institute
- Issue: No 6 (2024)
- Pages: 831-844
- Section: SOIL PHYSICS
- URL: https://rjsvd.com/0032-180X/article/view/666628
- DOI: https://doi.org/10.31857/S0032180X24060049
- EDN: https://elibrary.ru/YBYFHU
- ID: 666628
Cite item
Abstract
The use of synthetic and natural resins in the fixation of organic-mineral matter for further studies is common, e.g. in the micromorphological study of soils, since the procedure of making thin sections includes the impregnation of the sample with aggregates. At the same time, their effect on the soil structure has not been known until now. In this article, an experiment to study the effect of synthetic and natural resins on the nano-and microstructure of soil during impregnation is set up for the first time. Using small-angle X-ray scattering and computed tomography techniques, the first data are obtained on the characteristics of resins frequently used in laboratories, as well as on their effects on the structure of soil samples. The X-ray “transparency” of fixing materials was detected. Subsequent impregnation of AU horizon fraction from Haplic Chernozems of Kursk region by them allowed to establish the influence of epoxy resin on the change of size of nanostructural heterogeneities of soil. The experiment with different horizons of Protosalic Solonetz allowed to establish an increase in the size of nanoheterogeneities with depth in the trend of native soil in relation to the trend of impregnated soil. At the micro level, a decrease in microporosity within the first per cent after polymerisation of the curing agent was proved. The nanostructure of soil monoliths and separate fractions were investigated for the first time at this station. The above results can be used in sample preparation and further analysis of organic-mineral objects (soil, rock, ground) for a number of studies that require fixation of the substance structure at different dimensional levels.
Full Text
##article.viewOnOriginalSite##About the authors
R. E. Musaelyan
Dokuchaev Soil Science Institute
Author for correspondence.
Email: romaniero1@gmail.com
Russian Federation, Moscow
K. N. Abrosimov
Dokuchaev Soil Science Institute
Email: romaniero1@gmail.com
Russian Federation, Moscow
K. A. Romanenko
Dokuchaev Soil Science Institute
Email: romaniero1@gmail.com
Russian Federation, Moscow
References
- Абросимов К.Н., Герке К.Н., Семенков И.Н., и Корост Д.В. Применения алгоритма Оцу при сегментации порового пространства почв по томографическим данным // Почвоведение. 2021. № 4. С. 475–488. http s: //d o i.o rg/10.31857/ S 0032180 X 21040031
- Бернштейн П.С., Буняк Н.Д. Пропитка заготовок для изготовления безрельефных аншлифов составами на основе сингенетических смол и монтирование их в стандартные шашки // Тр. ЦНИГРИ цвет. и благород. металлов. 1974. № 142. С. 3–47.
- Калинин Т.Г., Ивонин Д., Абросимов К.Н, Грачев Е.А., Сорокина Н.В. Анализ томографических изображений структуры порового пространства почв методами интегральной геометрии // Почвоведение. 2021. № 9. С. 1113–1123. https://doi.org/10.31857/ S 0032180 X 21090033
- Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
- Классификация и диагностика почв СССР. М.: Колос, 1977. 224 с.
- Коненко В.Ф. Методика изготовления прозрачных препаратов для исследования на микрозонде // Минералогия и петрохимия интрузивных комплексов Сибири. Новосибирск: Наука, 1982, 156 с.
- Лебедева М.П., Плотникова О.О., Чурилин Н.А., Романис Т.В., Шишков В.А. Влияние состава и свойств хвалынских отложений на эволюцию почв Волго-Уральского междуречья (по результатам минералогических и микроморфологических исследований) // Геоморфология. 2022. № 53. С. 48–59. https://doi.org/10.31857/ S 0435428122050091
- Михайленко Ю. В. Изготовление прозрачных и полированных шлифов. Методические указания. Ухта: УГТУ, 2012. 43 с.
- Мусаэлян Р.Э. Связь между данными малоуглового рентгеновского рассеяния и рентгеновской дифракции при определении минерального состава солонца (Джаныбекский стационар) // Глины и глинистые минералы – 2023. VI Рос. c ов. по глинам и глинистым минералам “ГЛИНЫ-2023”. СПб., 13–16 июня 2023 г. М.: ИГЕМ РАН, 2023. 232 с.
- Полевой определитель почв России. М.: Почв. ин-т им. В.В. Докучаева, 2008. 182 с.
- Роде А.А., Польский М.Н. Почвы Джаныбекского стационара, их морфологическое строение, механический и химический состав и физические свойства // Почвы полупустыни Северо-Западного Прикаспия и их мелиорация. 1961. Т. 56. С. 3–214.
- Хитров Н.Б., Герасимова М.И. Диагностические горизонты в классификации почв России: версия 2021 г. // Почвоведение. 2021. № 8. С. 899–910. https://doi.org/0.31857/S0032180X22010087
- Хитров Н.Б., Герасимова М.И. Предлагаемые изменения в классификации почв России: диагностические признаки и почвообразующие породы // Почвоведение. 2022. № 1. С. 3–14. https://doi.org/10.31857/S0032180X22010087
- Bahadur J., Radlinski A.P., Melnichenko Y.B., Mastalerz M., Schimmelmann A. Small-angle and ultrasmall-angle neutron scattering (SANS/USANS) study of New Albany shale: a treatise on microporosity // Energy Fuels. 2015. V. 29. P. 567–576. https://doi.org/10.1021/ef502211w
- Bendle J., Palmer A., Carr S. A comparison of micro-CT and thin section analysis of Lateglacial glaciolacustrine varves from Glen Roy, Scotland // Quarter. Sci. Rev. 2015. P. 114. https://doi.org/10.1016/j.quascirev.2015.02.008
- Neil C.W., Hjelm R.P., Hawley M.E., Watkins E.B., Cockreham C., Wu D., Mao Y. Probing oil recovery in shale nanopores with small-angle and ultra-small-angle neutron scattering // Int.J. Coal Geology. 2022. V. 253. P. 103950. https://doi.org/10.1016/j.coal.2022.103950
- Elliot T., Heck R. A comparison of optical and X-ray CT technique for void analysis in soil thin section // Geoderma. 2007. V. 141. P. 60–70. https://doi.org/10.1016/j.geoderma.2007.05.001.
- Fomin D.S., Yudina A.V., Romanenko K.A., Abrosimov K.N., Karsanina M.V., Gerke K.M. Soil pore structure dynamics under steady-state wetting-drying cycle // Geoderma. 2023. V. 432. P. 116401. https://doi.org/10.1016/j.geoderma.2023.116401
- Fomin D., Timofeeva M., Ovchinnikova O., Valdes-Korovkin I., Holub A., Yudina A. Energy-Based Indicators of Soil Structure by Automatic Dry Sieving // Soil Till. Res. 2021. V. 214. P. 105183. https://doi.org/10.1016/j.still.2021.105183
- Ganyushkin D., Lessovaia S., Vlasov D., Kopitsa, G., Almásy L., Chistyakov K., Panova E. Application of Rock Weathering and Colonization by Biota for the Relative Dating of Moraines from the Arid Part of the Russian Altai Mountains // Geosciences (Switzerland). 2021. V. 11(8). P. 342. https://doi.org/10.3390/geosciences11080342
- Greenland D.J. Soil damage by intensive arable cultivation: temporary or permanent? // Phil. Trans. Royal Soc. 1977. V. 281. P. 193–208.
- Hammersley A.P. FIT2D: a multi-purpose data reduction, analysis and visualization program // J. Appl. Crystallogr. 2016. V. 49. P. 646–652. https://doi.org/10.1107/S1600576716000455
- Hildebrand T., Ruegsegger P. A new method for the model independent assessment of thickness in three dimensional images // J. Microsc. 1997. V. 185. P. 67–75. https://doi.org/10.1046/j.1365-2818.1997.1340694.x
- IUSS Working Group WRB 2015 World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps / World Soil Resources Reports no 106. Rome: FAO. 2015.
- Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis // J. Appl. Crystallogr. 2003. V. 36. P. 1277–1282. https://doi.org/10.1107/S0021889803012779
- Lebedeva M.P., Golovanov D.L., Abrosimov K.N. Micromorphological diagnostics of pedogenetic, eolian, and colluvial processes from data on the fabrics of crusty horizons in differently aged extremely aridic soils of Mongolia // Quarter. Int. 2016. V. 418. P. 75–83. https://doi.org/10.1016/j.quaint.2015.12.042
- Lessovaia S.N., Gerrits R., Gorbushina A.A., Polekhovsky Y.S., Dultz S., Kopitsa G.G. Modeling Biogenic Weathering of Rocks from Soils of Cold Environments // Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. Lecture Notes in Earth System Sciences. 2020. V. 789. P. 501–515. https://doi.org/10.1007/978-3-030-21614-6_27
- Lessovaia S., Plötze M., Inozemzev S., Goryachkin S. Traprock transformation into clayey materials in soil environments of the Central Siberian Plateau, Russia // Clays and Clay Minerals. 2016. V. 64. P. 668–676. https://doi.org/10.1346/CCMN.2016.064042
- Haili L., Anneleen F., Julie D., Bart P., Swennen R. X-ray high resolution micro-CT of thin sections: A new calibration approach between classical // EGU General Assembly Conference Abstracts. 2009.
- Mady A.Y., Shein E.V., Abrosimov K.N., Skvortsova E.B. X-ray computed tomography: Validation of the effect of pore size and its connectivity on saturated hydraulic conductivity // Soil Environ. 2021. V. 40. P. 1–8. https://doi.org/10.25252/SE/2021/182420
- Mady A.Y., Shein E.V., Skvortsova E.B., Abrosimov K.N. Evaluate the impact of porous media structure on soil thermal parameters using x-ray computed tomography // Eurasian Soil Science. 2020. V. 53. P. 1752–1759. https://doi.org/10.1134/S1064229320120066
- Nguyen T.X, Bhatia S.K. Characterization of accessible and inaccessible pores in microporous carbons by a combination of adsorption and small angle neutron scattering // Carbon. 2012. V. 50. P. 3045–54. https://doi.org/10.1016/j.carbon.2012.02.091
- Peters G.S., Zakharchenko O.A., Konarev P.V., Karmazikov Y.V., Smirnov M.A., Zabelin A.V., Mukhamedzhanov E.H. The small-angle X-ray scattering beamline BioMUR at the Kurchatov synchrotron radiation source // Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2019. V. 945. P. 162616. https://doi.org/10.1016/J.NIMA.2019.162616
- Peters G.S., Gaponov Y.A., Konarev P. V., Marchenkova M.A., Ilina K.B., Volkov V. V., Pisarevsky Y. V. Upgrade of the BioMUR beamline at the Kurchatov synchrotron radiation source for serial small-angle X-ray scattering experiments in solutions // Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2022.V. 1025. P. 166170. https://doi.org/10.1016/J.NIMA.2021.166170
- Plotnikova O., Romanis T., Kust P. Comparison of digital image analysis methods for morphometric characterization of soil aggregates in thin sections // Dokuchaev Soil Bulletin. 2020. V. 104. P. 199–222. h ttps://doi.org/10.19047/0136-1694-2020-104-199-222
- Radlinski A.P, Radlinska E.Z. The microstructure of pore space in coals of different rank: a small angle scattering and SEM study // Coalbed methane: scientific, environmental and economic evaluation / Eds. Mastalerz M. et al. Dordrecht, 1999. P. 329–365. https://doi.org/10.1007/978-94-017-1062-6_20
- Remy E., Thiel E. Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D // Pattern Recognition Lett. 2002. V. 23. P. 649–661. https://doi.org/10.1016/S0167-8655(01)00141-6
- Ruppert L.F., Sakurovs R., Blach T.P., He L., Melnichenko Y.B., Mildner D.F.R., Alcantar-Lopez L. A USANS/SANS Study of the Accessibility of Pores in the Barnett Shale to Methane and Water // Energy and Fuels. 2013. V. 27. P. 772–779. https://doi.org/10.1021/EF301859S
- Stirck G.B. Some aspects of soil shrinkage and effect of cracking upon water entry into the soils // Austr. J. Agric. Res. 1954. P. 279-296. https://doi.org/10.1071/AR9540279
- Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria // J. Appl. Crystallogr. 1992. V. 25. P. 495–503. https://doi.org/10.1107/S0021889892001663
- Tsukimura K., Miyoshi Y., Takagi T., Suzuki M., Wada S. Amorphous nanoparticles in clays, soils and marine sediments analyzed with a small angle X-ray scattering (SAXS) method // Scientific Rep. 2021. V. 11. https://doi.org/10.1038/s41598-021-86573-9
- Ulrich D, van Rietbergen B, Laib A, Rüegsegger P The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone // Bone. 1999. V. 25. P. 55–60. https://doi.org/10.1016/s8756-3282(99)00098-8
- Volkov V.V., Konarev P.V., Kryukova A.E. Combined Scheme of Reconstruction of the Particle Size Distribution Function Using Small-Angle Scattering Data // JETP Lett. 2021. V. 1129. P. 591–595. https://doi.org/10.1134/S0021364020210110
- Young I.T., Gerbrands J.J., van Vliet L.J. Fundamentals of Image Processing. 2004. P. 112.
- Zhao J., Jin Zhijun, Hu Q., Jin Zhenkui, Barber T.J., Zhang Y., Bleuel M. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs // Sci. Rep. 2017. V. 7. P. 1–16. https://doi.org/10.1038/S41598-017-15362-0
Supplementary files
