Influence of various factors on the transcription activity of Crassostrea gigas pogo transposons
- Authors: Puzakova L.V.1, Osipova A.S.1, Ulupova Y.N.1, Puzakov M.V.1, Puzakova P.M.2
-
Affiliations:
- Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences
- Branch of Lomonosov Moscow State University
- Issue: Vol 59, No 4 (2025)
- Pages: 557-571
- Section: ГЕНОМИКА. ТРАНСКРИПТОМИКА
- URL: https://rjsvd.com/0026-8984/article/view/692535
- DOI: https://doi.org/10.31857/S0026898425040034
- ID: 692535
Cite item
Abstract
About the authors
L. V. Puzakova
Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of SciencesSevastopol, 299011 Russia
A. S. Osipova
Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of SciencesSevastopol, 299011 Russia
Y. N. Ulupova
Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of SciencesSevastopol, 299011 Russia
M. V. Puzakov
Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences
Email: puzakov.mikh@yandex.ru
Sevastopol, 299011 Russia
P. M. Puzakova
Branch of Lomonosov Moscow State UniversitySevastopol, 299001 Russia
References
- Frost L.S., Leplae R., Summers A.O., Toussaint A. (2005) Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3(9), 722–732. https://doi.org/10.1038/nrmicro1235
- Arkhipova I.R., Yushenova I.A. (2019) Giant transposons in eukaryotes: is bigger better? Genome Biol. Evol. 11(3), 906–918. https://doi.org/10.1093/gbe/evz041
- de Koning A.P., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7(12), e1002384. https://doi.org/10.1371/journal.pgen.1002384
- Guo B., Zou M., Gan X., He S. (2010) Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing. BMC Genomics. 11. 396. https://doi.org/10.1186/1471-2164-11-396
- Muñoz-López M., García-Pérez J. L. (2010) DNA transposons: nature and applications in genomics. Curr. Genom. 11(2), 115–128. https://doi.org/10.2174/138920210790886871
- Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. (2018) Ten things you should know about transposable elements. Genome Biol. 19(1), 199. https://doi.org/10.1186/s13059-018-1577-z
- Kojima K.K. (2020) Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 94(6), 233–252. https://doi.org/10.1266/ggs.1800024
- Gao B., Wang Y., Diaby M., Zong W., Shen D., Wang S., Chen C., Wang X., Song C. (2020) Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mob. DNA. 11, 25. https://doi.org/10.1186/s13100-020-00220-0
- Пузаков М.В., Пузакова Л.В. (2022) Распространенность, разнообразие и эволюция ДНК-транспозонов L18 (DD37E) в геномах стрекающих (Cnidaria). Молекуляр. биология. 56(3), 476–490. https://doi.org/10.31857/S0026898422030120
- Claudianos C., Brownlie J., Russell R., Oakeshott J., Whyard S. (2002) maT — a clade of transposons intermediate between mariner and Tc1. Mol. Biol. Evol. 19(12), 2101–2109. https://doi.org/10.1093/oxfordjournals.molbev.a004035
- Zhang H.H., Shen Y.H., Xiong X.M., Han M.J., Zhang X.G. (2016) Identification and evolutionary history of the DD41D transposons in insects. Genes & Genomics. 38, 109–117. https://doi.org/10.1007/s13258-015-0356-4
- Tellier M., Bouuaert C.C., Chalmers R. (2015) Mariner and the ITm superfamily of transposons. Microbiol Spectr. 3(2), 753–772. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014
- Shi S., Puzakov M., Guan Z., Xiang K., Diaby M., Wang Y., Wang S., Song C., Gao B. (2021) Prokaryotic and eukaryotic horizontal transfer of Sailor (DD82E), a new superfamily of IS630-Tc1-Mariner DNA-transposons. Biology (Basel). 10, 1005. https://doi.org/doi: 10.3390/biology10101005
- Shi S., Puzakov M.V., Puzakova L.V., Ulupova Yu.N., Xiang K., Wang B., Gao B., Song Ch. (2023) Hiker, a new family of DNA transposons encoding transposases with DD35E motifs, displays a distinct phylogenetic relationship with most known DNA transposon families of IS630-Tc1-mariner (ITm). Mol. Phylogenet. Evol. 188, 107906. https://doi.org/10.1016/j.ympev.2023.107906
- Пузаков М.В., Пузакова Л.В. (2024) Структура и эволюция ДНК-транспозонов надсемейства L31 двустворчатых моллюсков. Молекуляр. биология. 58(1), 54–72. https://doi.org/10.31857/S0026898424010051
- Пузакова Л.В., Пузаков М.В., Пузакова П.М. (2024) L31-транспозоны шестилучевых кораллов (Hexacorallia): распространение, разнообразие и эволюция. Генетика. 60(6), 22–30. https://doi.org/10.31857/S0016675824060027
- Liu Y., Zong W., Diaby M., Lin Z., Wang S., Gao B., Ji T., Song C. (2021) Diversity and evolution of pogo and Tc1/mariner transposons in the Apoidea genomes. Biology. 10(9), 940. https://doi.org/10.3390/biology10090940
- Tudor M., Lobocka M., Goodell M., Pettitt J., O’Hare K. (1992) The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232(1), 126–134. https://doi.org/10.1007/BF00299145
- Shao H.G., Tu Z.J. (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics. 159(3), 1103–1115. https://doi.org/10.1093/genetics/159.3.1103
- Dupeyron M., Baril T., Bass C., Hayward A. (2020) Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob. DNA. 11, 21. https://doi.org/10.1186/s13100-020-00212-0
- Puzakov M.V., Puzakova L.V., Cheresiz S.V. (2018) An analysis of IS630/Tc1/mariner transposons in the genome of a pacific oyster Crassostrea gigas. J. Mol. Evol. 86(8), 566–580. https://doi.org/10.1007/s00239-018-9868-2
- Chow K.C., Tung W.L. (2000) Magnetic field exposure stimulates transposition through the induction of DnaK/J synthesis. Biochem. Biophys. Res. Commun. 270(3), 745–748. https://doi.org/10.1006/bbrc.2000.2496
- Бубенщикова Е.В., Антоненко О.В., Васильева Л.В., Ратнер В.А. (2002) Индукция транспозиций МГЭ 412 раздельно тепловым и холодовым шоком в сперматогенезе у самцов дрозофилы. Генетика. 38(1), 46–55.
- Del Re B., Garoia F., Mesirca P. Agostini C., Bersani F., Giorgi G. (2003) Extremely low frequency magnetic fields affect transposition activity in Escherichia coli. Radiat. Environ. Biophys. 42(2), 113–118. https://doi.org/10.1007/s00411-003-0192-9
- Захаренко Л.П., Коваленко Л.В., Перепелкина М.П., Захаров И.К. (2006) Влияние γ-радиации на индукцию транспозиций hobo-элемента у Drosophila melanogaster. Генетика. 42, 763–767.
- Васильева Л.А., Выхристюк О.В., Антоненко О.В., Захаров И.К. (2007) Индукция транспозиций мобильных генетических элементов в геноме Drosophila melanogaster различными стрессовыми факторами. Информацион. Вестн. ВОГиС. 11, 662–671.
- Чересиз С.В., Юрченко Н.Н., Иванников А.В., Захаров И.К. (2008) Мобильные элементы и стресс. Информацион. Вестн. ВОГиС. 12, 217–242.
- Chalopin D., Naville M., Plard F., Galiana D., Volff J.-N. (2015) Comparative analysis of transposable elements highlights Mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 7(2), 567–580. https://doi.org/10.1093/gbe/evv005
- Gao B., Shen D., Xue S., Chen C., Cui H., Song C. (2016) The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA. (7), 1–16. https://doi.org/10.1186/s13100-016-0059-7
- Petrov D.A. (2001) Evolution of genome size: new approaches to an old problem. Trends Genet. 17(1), 23–28. https://doi.org/10.1016/s0168-9525(00)02157-0
- Piacentini L., Fanti L., Specchia V., Bozzetti M.P., Berloco M., Palumbo G., Pimpinelli S. (2014) Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma. 123(4), 345–354. https://doi.org/10.1007/s00412-014-0464-y
- Auvinet J., Graça P., Belkadi L., Petit L., Bonnivard E., Dettaï A., Detrich W.H. 3rd, Ozouf-Costaz C., Higuet D. (2018) Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. BMC Genomics. 19(1), 339. https://doi.org/10.1186/s12864-018-4714-x
- Feschotte C., Pritham E.J. (2007) DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368. https://doi.org/10.1146/annurev.genet.40.110405. 090448
- Wells J.N., Feschotte C. (2020) A Field Guide to eukaryotic transposable elements Annu. Rev. Genet. 54(1), 539–561. https://doi.org/10.1146/annurev-genet-040620-022145
- Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25(17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389
- Yamada K.D., Tomii K., Katoh K. (2016) Application of the MAFFT sequence alignment program to large data — Reexamination of the usefulness of chained guide trees. Bioinformatics. 32(21), 3246–3251. https://doi.org/10.1093/bioinformatics/btw4122016
- Okonechnikov K., Golosova O., Fursov M.; UGENE team. (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 28(8), 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
- Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
- Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35(2), 518–522. https://doi.org/10.1093/molbev/msx281
- Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 14(6), 587–589. https://doi.org/10.1038/nmeth.4285
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platform. Mol. Biol. Evol. 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
- Bray N.L, Pimentel H., Melsted P., Pachter L. (2016) Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527. https://doi.org/10.1038/nbt.3519
- Улупова Ю.Н., Пузаков М.В., Пузакова Л.В. (2023) ДНК-транспозоны pogo в геномах медуз рода Aurelia. Мол. генет. микробиол. вирусол. 41(2), 21–27. https://doi.org/10.17116/molgen20234102121
- Mateo L., González J. (2014) Pogo-like transposases have been repeatedly domesticated into CENP-B-related proteins. Genome Biol. Evol. 6(8), 2008–2016. https://doi.org/10.1093/gbe/evu153
- Bleykasten-Grosshans C., Neuvéglise C. (2011) Transposable elements in yeasts. C.R. Biol. 334(8–9), 679–686. https://doi.org/10.1016/j.crvi.2011.05.017
- Bleykasten-Grosshans C., Fabrizio R., Friedrich A., Schacherer J. (2021) Species-wide transposable element repertoires retrace the evolutionary history of the Saccharomyces cerevisiae host. Mol. Biol. Evol. 38(10), 4334–4345. https://doi.org/10.1093/molbev/msab171
- Пузакова Л.В., Пузаков М.В. (2022) Zvezda — новое подсемейство Tc1-подобных транспозонов в геномах Asterozoa. Генетика. 58(2), 137–147. https://doi.org/10.31857/S001667582201009X
- Puzakov M.V., Puzakova L.V., Shi S., Cheresiz S.V. (2023) maT and mosquito transposons in Cnidarians: evolutionary history and intraspecific differences. Funct. Integr. Genomics. 23(3), 244. https://doi.org/10.1007/s10142-023-01175-0
- Almeida M.V., Vernaz G., Putman A.L., Miska E.A. (2022) Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends Genet. 38(6), 529–553. https://doi.org/10.1016/j.tig.2022.02.009
- Loubalova Z., Konstantinidou P., Haase A.D. (2023) Themes and variations on piRNA-guided transposon control. Mobile DNA. 14(1), 10. https://doi.org/10.1186/s13100-023-00298-2
- Юрченко Н.Н., Коваленко Л.В., Захаров И.К. (2011) Мобильные генетические элементы: нестабильность генов и геномов. Вавил. журн. генетики и селекции. 15(2), 261–270.
- Grundy E.E., Diab N., Chiappinelli K.B. (2022) Transposable element regulation and expression in cancer. FEBS J. 289(5), 1160–1179. https://doi.org/10.1111/febs.15722
- Schwarz R., Koch P., Wilbrandt J., Hoffmann S. (2022) Locus-specific expression analysis of transposable elements. Brief Bioinform. 23(1), bbab417. https://doi.org/10.1093/bib/bbab417
- Schaack S., Gilbert C., Feschotte C. (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol. Evol. 25(9), 537–546. https://doi.org/10.1016/j.tree.2010.06.001
- Blumenstiel J.P. (2019) Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation. Genes (Basel). 10(5), 336. https://doi.org/10.3390/genes10050336
- Wallau G.L., Ortiz M.F., Loreto E.L. (2012) Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biol. Evol. 4(8), 689–699. https://doi.org/10.1093/gbe/evs055
- Jangam D., Feschotte C., Betrán E. (2017) Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 33(11), 817–831. https://doi.org/10.1016/j.tig.2017.07.011
- Sinzelle L., Izsvák Z., Ivics Z. (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell. Mol. Life Sci. 66(6), 1073–1093. https://doi.org/10.1007/s00018-009-8376-3
- Kapitonov V.V., Jurka J. (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 9(5), 411–412. https://doi.org/10.1038/nrg2165-c1
- Panchin Y., Moroz L.L. (2008) Molluscan mobile elements similar to the vertebrate recombination-activating genes. Biochem. Biophys. Res. Commun. 369(3), 818–823. https://doi.org/10.1016/j.bbrc.2008.02.097
- Casola C., Hucks D., Feschotte C. (2007) Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol. Biol. Evol. 25(1), 29–41. https://doi.org/10.1093/molbev/msm221
- Waldron R., Rodriguez M.L.A.B., Williams J.M., Ning Z., Ahmed A., Lindsay A., Moore T. (2024) JRK binds satellite III DNA and is necessary for the heat shock response. Cell Biol. Int. 48(8), 1212–1222. https://doi.org/10.1002/cbin.12216
- Talbert P.B., Henikoff S. (2022). The genetics and epigenetics of satellite centromeres. Genome Res. 32(4), 608–615. https://doi.org/10.1101/gr.275351.121
- Nagy D., Verheyen S., Wigby K.M., Borovikov A., Sharkov A., Slegesky V., Larson A., Fagerberg C., Brasch-Andersen C., Kibæk M., Bader I., Hernan R., High F.A., Chung W.K., Schieving J.H., Behunova J., Smogavec M., Laccone F., Witsch-Baumgartner M., Zobel J., Duba H.C., Weis D. (2022) Genotype-phenotype comparison in POGZ-related neurodevelopmental disorders by using clinical scoring. Genes (Basel). 13(1), 154. https://doi.org/10.3390/genes13010154
Supplementary files
